scholarly journals Donor Atom Preference of Organoruthenium and Organorhodium Cations on the Interaction with Novel Ambidentate (N,N) and (O,O) Chelating Ligands in Aqueous Solution

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3586
Author(s):  
Sándor Nagy ◽  
András Ozsváth ◽  
Attila Cs. Bényei ◽  
Etelka Farkas ◽  
Péter Buglyó

Two novel, pyridinone-based chelating ligands containing separated (O,O) and (Namino,Nhet) chelating sets (Namino = secondary amine; Nhet = pyrrole N for H(L3) (1-(3-(((1H-pyrrole-2-yl)methyl)amino)propyl)-3-hydroxy-2-methylpyridin-4(1H)-one) or pyridine N for H(L5) (3-hydroxy-2-methyl-1-(3-((pyridin-2-ylmethyl)amino)propyl)pyridin-4(1H)-one)) were synthesized via reduction of the appropriate imines. Their proton dissociation processes were explored, and the molecular structures of two synthons were assessed by X-ray crystallography. These ambidentate chelating ligands are intended to develop Co(III)/PGM (PGM = platinum group metal) heterobimetallic multitargeted complexes with anticancer potential. To explore their metal ion binding ability, the interaction with Pd(II), [(η6-p-cym)Ru]2+ and [(η5-Cp*)Rh]2+ (p-cym = 1-methyl-4-isopropylbenzene, Cp* = pentamethyl-cyclopentadienyl anion) cations was studied in aqueous solution with the combined use of pH-potentiometry, NMR and HR ESI-MS. In general, organorhodium was found to form more labile complexes over ruthenium, while complexation of the (N,N) chelating set was slower than the processes of the pyridinone unit with (O,O) coordination. Formation of the organoruthenium complexes starts at lower pH (higher thermodynamic stabilities of the corresponding complexes) than for [(η5-Cp*)Rh]2+ but, due to the higher affinity of [η6-p-cym)Ru]2+ towards hydrolysis, the complexed ligands are capable of competing with hydroxide ion in a lesser extent than for the rhodium systems. As a result, under biologically relevant conditions, the rhodium binding effectivity of the ligands becomes comparable or even slightly higher than their effectivity towards ruthenium. Our results indicate that H(L3) is a less efficient (N,N) chelator for these metal ions than H(L5). Similarly, due to the relative effectivity of the (O,O) and (N,N) chelates at a 1:1 metal-ion-to-ligand ratio, H(L5) coordinates in a (N,N) manner to both cations in the whole pH range studied while, for H(L3), the complexation starts with (O,O) coordination. At a 2:1 metal-ion-to-ligand ratio, H(L3) cannot hinder the intensive hydrolysis of the second metal ion, although a small amount of 2:1 complex with [(η5-Cp*)Rh]2+ can also be detected.

1999 ◽  
Vol 6 (6) ◽  
pp. 321-328 ◽  
Author(s):  
Bin Song ◽  
Jing Zhao ◽  
Fridrich Gregáň ◽  
Nadja Prónayová ◽  
S. Ali A. Sajadi ◽  
...  

The stability constants of the 1:1 complexes formed between methylphosphonylphosphate (MePP3-), CH3P(O)2--O-PO32- , and Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+,​ or Cd2+ (M2+) were determined by potentiometric pH titration in aqueous solution (25 C° ; l = 0.1 M, NaNO3 ). Monoprotonated M(H;MePP) complexes play only a minor role. Based on previously established correlations for M2+ -diphosphate monoester complex-stabilities and diphosphate monoester β-group. basicities, it is shown that the M(Mepp)- complexes for Mg2+ and the ions of the second half of the 3d series, including Zn2+ and Cd2+, are on average by about 0.15 log unit more stable than is expected based on the basicity of the terminal phosphate group in MePP3-. In contrast, Ba(Mepp)- and Sr(Mepp)- are slightly less stable, whereas the stability for Ca(Mepp)- is as expected, based on the mentioned correlation. The indicated increased stabilities are explained by an increased basicity of the phosphonyl group compared to that of a phosphoryl one. For the complexes of the alkaline earth ions, especially for Ba2+, it is suggested that outersphere complexation occurs to some extent. However, overall the M(Mepp)- complexes behave rather as expected for a diphosphate monoester ligand.


2019 ◽  
Vol 43 (24) ◽  
pp. 9711-9724 ◽  
Author(s):  
Rui Liu ◽  
Pothiappan Vairaprakash ◽  
Jonathan S. Lindsey

Profound morphological and fluorogenic changes ensue upon binding of a zinc ion by two polymers, each of which bears a single dipyrrin at one terminus, forming the bis(dipyrrinato)Zn(ii) complex.


2016 ◽  
Vol 72 (11) ◽  
pp. 777-785
Author(s):  
Elena A. Mikhalyova ◽  
Swiatoslaw Trofimenko ◽  
Matthias Zeller ◽  
Anthony W. Addison ◽  
Vitaly V. Pavlishchuk

Polynuclear complexes and coordination polymers of 3dmetals have attracted significant interest evoked by a number of their unique properties. One of the most common approaches to the directed synthesis of coordination polymers is the linking of pre-prepared discrete coordination units by polydentate ligands. The formation of polynuclear complexes is usually a spontaneous process and precise prediction of the products of such reactions is virtually impossible in most cases. Tris(pyrazolyl)borates (Tp) act as tripodal `capping' ligands which form stable complexes with 3dmetal ions. In such 1:1 compounds, three metal-ion coordination sites are occupied by N atoms from a Tp anion. This limits the number of remaining coordination sites, and thus the number of additional ligands which may coordinate, and opens an attractive approach for the directed design of desirable structures by exploiting ligands with appropriate composition and topology. In the present study, Tp anions with neopentyl [TpNp, tris(3-neopentylpyrazolyl)borate] and cyclohexyl [TpCy, tris(3-cyclohexylpyrazolyl)borate] substituents were used as `capping' ligands and the dianion of tetraacetylethane (3,4-diacetylhexa-2,4-diene-2,5-diolate, tae2−) was employed as a bridge. The dinuclear complexes (μ-3,4-diacetylhexa-2,4-diene-2,5-diolato-κ4O2,O3:O4,O5)bis{[tris(3-cyclohexyl-1H-pyrazol-1-yl-κN2)borato]cobalt(II)} acetonitrile disolvate, [Co2(C27H40BN6)2(C10H12O4)]·2CH3CN, (I)·2CH3CN, and (μ-3,4-diacetylhexa-2,4-diene-2,5-diolato-κ4O2,O3:O4,O5)bis{[tris(3-neopentyl-1H-pyrazol-1-yl-κN2)borato]nickel(II)}, [Ni2(C24H40BN6)2(C10H12O4)], (II), were synthesized by the reaction of the mononuclear complexes TpCyCoCl or TpNpNiCl with H2tae (3,4-diacetylhexane-2,5-dione or tetraacetylethane) in the presence of NEt3as base. Compounds (I) and (II) were characterized by mass spectrometry, elemental analysis, and X-ray crystallography. They possess similar molecular structures, X-ray diffraction revealing them to be dinuclear in nature and composed of discrete Tp–Munits in which two metal ions are linked by a tae2−dianion. Each metal ion possesses a five-coordinate square-pyramidal environment. The interplanar angles between the acetylacetonate fragments are significantly smaller than the near-90° values commonly observed.


Parasitology ◽  
1995 ◽  
Vol 110 (5) ◽  
pp. 555-563 ◽  
Author(s):  
A. Brown ◽  
J. M. Burleigh ◽  
E. E. Billett ◽  
D. I. Pritchard

SUMMARYThe proteolytic activities present in adult Necator americanus excretory–secretory products have been assessed using biologically relevant, naturally occurring substrates (haemoglobin and fibrinogen) and a number of synthetic fluorogenic and chromogenic substrates. One broad peak of activity was observed against haemoglobin in the pH range 5 to 7, with maximum activity at pH 6·6, while fibrinogenolytic activity was shown to be greater at pH 3·5. Inhibition studies against haemoglobin, fibrinogen and synthetic substrates using a battery of appropriate protease inhibitors indicated the presence of a mixture of aspartyl, cysteinyl and serine proteases. Metal ion (Ca2+, Zn2+ and Fe2+) stimulation was demonstrated, with stimulation by Zn2+ being the most marked. These results are discussed in the context of recent developments in the field of parasite proteolytic enzymes, where they have been suggested as targets for immuno- and chemotherapy.


1988 ◽  
Vol 66 (5) ◽  
pp. 1194-1198 ◽  
Author(s):  
Oswald S. Tee ◽  
N. Rani Iyengar

Bromide ion induced debromination of the anion of 4-bromo-4-methyl-2,5-cyclohexadienone-2-carboxylic acid (1) is catalyzed by cupric ions and ferric ions. Similarly, the enolization of the anion of the benzocyclohexadienone 3, which is formed during the bromination of 1-naphthol-2-carboxylic acid, is catalyzed by some metal ions. The origin of the catalysis in these reactions is strong metal ion binding to the incipient dianion products that are of the salicylate type. Evidence for this is that the efficiency of the metal (and hydrogen) ion catalysis parallels the stability of the analogous complexes with the salicylate dianion.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1355 ◽  
Author(s):  
Matteo Savastano ◽  
Matteo Fiaschi ◽  
Giovanni Ferraro ◽  
Paola Gratteri ◽  
Palma Mariani ◽  
...  

Synthesis of the new scorpiand ligand L composed of a [9]aneN3 macrocyclic ring bearing a CH2CH2NHCH2-anthracene tail is reported. L forms both cation (Zn2+) and anion (phosphate, benzoate) complexes. In addition, the zinc complexes of L bind these anions. The equilibrium constants for ligand protonation and complex formation were determined in 0.1 M NaCl aqueous solution at 298.1 ± 0.1 K by means of potentiometric (pH-metric) titrations. pH Controlled coordination/detachment of the ligand tail to Zn2+ switch on and off the fluorescence emission from the anthracene fluorophore. Accordingly, L is able to sense Zn2+ in the pH range 6–10 down to nM concentrations of the metal ion. L can efficiently sense Zn2+ even in the presence of large excess of coordinating anions, such as cyanide, sulphide, phosphate and benzoate, despite their ability to bind the metal ion.


Sign in / Sign up

Export Citation Format

Share Document