scholarly journals Constituents from the Fruiting Bodies of Trametes cubensis and Trametes suaveolens in Vietnam and Their Anti-Inflammatory Bioactivity

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7311
Author(s):  
Yue-Chiun Li ◽  
Nguyen Thi Ngan ◽  
Kun-Ching Cheng ◽  
Tsong-Long Hwang ◽  
Tran Dinh Thang ◽  
...  

It is reported that various fungi have been used for medicine and edible foods. The tropical Trametes genus is popular and well-known in Vietnam for its health effects and bioactivities. In this study, the fruiting bodies of the edible fungi T. cubensis and T. suaveolens were collected in Vietnam. The preliminary bioactivity screening data indicated that the methanol extracts of the fruiting bodies of T. cubensis and T. suaveolens displayed significant inhibition of superoxide anion generation and elastase release in human neutrophils. Therefore, the isolation and characterization were performed on these two species by a combination of chromatographic methods and spectrometric analysis. In total, twenty-four compounds were identified, and among these (1–3) were characterized by 1D-, 2D-NMR, and HRMS analytical data. In addition, the anti-inflammatory potentials of some purified compounds were examined by the cellular model for the inhibition of superoxide anion generation and elastase release in human neutrophils. Among the isolated compounds, (5,14), and (19) displayed significant anti-inflammatory potential. As the results suggest, the extracts and isolated compounds from T. cubensis and T. suaveolens are potential candidates for the further development of new anti-inflammatory lead drugs or natural healthy foods.

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4149
Author(s):  
Shiou-Ling Li ◽  
Ho-Cheng Wu ◽  
Tsong-Long Hwang ◽  
Chu-Hung Lin ◽  
Shuen-Shin Yang ◽  
...  

In a series of anti-inflammatory screenings of lauraceous plants, the methanolic extract of the leaves of Machilus japonica var. kusanoi (Hayata) J.C. Liao showed potent inhibition on both superoxide anion generation and elastase release in human neutrophils. Bioassay-guided fractionation of the leaves of M. japonica var. kusanoi led to the isolation of twenty compounds, including six new butanolides, machinolides A–F (1–6), and fourteen known compounds (7–20). Their structures were characterized by 1D and 2D NMR, UV, IR, CD, and MS data. The absolute configuration of the new compounds were unambiguously confirmed by single-crystal X-ray diffraction analyses (1, 2, and 3) and Mosher’s method (4, 5, and 6). In addition, lignans, (+)-eudesmin (11), (+)-methylpiperitol (12), (+)-pinoresinol (13), and (+)-galbelgin (16) exhibited inhibitory effects on N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced superoxide anion generation in human neutrophils with IC50 values of 8.71 ± 0.74 μM, 2.23 ± 0.92 μM, 6.81 ± 1.07 μM, and 7.15 ± 2.26 μM, respectively. The results revealed the anti-inflammatory potentials of Formosan Machilus japonica var. kusanoi.


Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 573
Author(s):  
Chia-Chi Peng ◽  
Chiung-Yao Huang ◽  
Atallah F. Ahmed ◽  
Tsong-Long Hwang ◽  
Jyh-Horng Sheu

The present investigation on chemical constituents of the soft coral Sarcophyton cherbonnieri resulted in the isolation of seven new cembranoids, cherbonolides F–L (1–7). The chemical structures of 1–7 were determined by spectroscopic methods, including infrared, one- and two-dimensional (1D and 2D) NMR (COSY, HSQC, HMBC, and NOESY), MS experiments, and a chemical reduction of hydroperoxide by triphenylphosphine. The anti-inflammatory activities of 1–7 against neutrophil proinflammatory responses were evaluated by measuring their inhibitory ability toward N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-induced superoxide anion generation and elastase release in primary human neutrophils. The results showed that all isolates exhibited moderate activities, while cherbonolide G (2) and cherbonolide H (3) displayed a more active effect than others on the inhibition of elastase release (48.2% ± 6.2%) and superoxide anion generation (44.5% ± 4.6%) at 30 µM, respectively.


Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 38
Author(s):  
Chi-Jen Tai ◽  
Chiung-Yao Huang ◽  
Atallah F. Ahmed ◽  
Raha S. Orfali ◽  
Walied M. Alarif ◽  
...  

Chemical investigation of a Red Sea Spongia sp. led to the isolation of four new compounds, i.e., 17-dehydroxysponalactone (1), a carboxylic acid, spongiafuranic acid A (2), one hydroxamic acid, spongiafuranohydroxamic acid A (3), and a furanyl trinorsesterpenoid 16-epi-irciformonin G (4), along with three known metabolites (−)-sponalisolide B (5), 18-nor- 3,17-dihydroxy-spongia-3,13(16),14-trien-2-one (6), and cholesta-7-ene-3β,5α-diol-6-one (7). The biosynthetic pathway for the molecular skeleton of 1 and related compounds was postulated for the first time. Anti-inflammatory activity of these metabolites to inhibit superoxide anion generation and elastase release in N-formyl-methionyl-leucyl phenylalanine/cytochalasin B (fMLF/CB)-induced human neutrophil cells and cytotoxicity of these compounds toward three cancer cell lines and one human dermal fibroblast cell line were assayed. Compound 1 was found to significantly reduce the superoxide anion generation and elastase release at a concentration of 10 μM, and compound 5 was also found to display strong inhibitory activity against superoxide anion generation at the same concentration. Due to the noncytotoxic activity and the potent inhibitory effect toward the superoxide anion generation and elastase release, 1 and 5 can be considered to be promising anti-inflammatory agents.


2019 ◽  
Vol 193 ◽  
pp. 100-108 ◽  
Author(s):  
Manuel I. Azócar ◽  
Romina Alarcón ◽  
Antonio Castillo ◽  
Jenny M. Blamey ◽  
Mariana Walter ◽  
...  

2006 ◽  
Vol 54 (7) ◽  
pp. 1063-1066 ◽  
Author(s):  
Yann-Lii Leu ◽  
Tsong-Long Hwang ◽  
Yu-Ming Chung ◽  
Pao-Yun Hong

Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 123
Author(s):  
Yen-Tung Lee ◽  
Yu-Li Chen ◽  
Yi-Hsuan Wu ◽  
Ih-Sheng Chen ◽  
Hsun-Shuo Chang ◽  
...  

The pathogenesis of acute respiratory distress syndrome (ARDS) is very complex. Patients with ARDS still suffer high mortality rates. Infiltration and activation of neutrophils in lungs are critical pathogenic factors in ARDS. In this study, we demonstrate that meso-dihydroguaiaretic acid (MDGA), a natural lignan, inhibits inflammatory responses in human neutrophils and ameliorates ARDS in mice. MDGA inhibited superoxide anion generation and elastase release in various G-protein coupled receptor agonists-induced human neutrophils. However, MDGA did not alter superoxide anion generation and elastase activity in cell-free systems. These results suggest that the anti-inflammatory effects of MDGA are mediated by regulating cellular signals in human neutrophils. In consistent with this, MDGA suppressed phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase in activated human neutrophils. Moreover, MDGA inhibited CD11b expression and adhesion in activated human neutrophils. Interestingly, MDGA reduced reactive oxygen species (ROS) generation but not superoxide anion generation in protein kinase C (PKC) activator-induced human neutrophils, suggesting that MDGA may also have ROS scavenging ability. Indeed, MDGA showed strong free radical scavenging activity in cell-free assays. Significantly, MDGA suppressed PKC-induced neutrophil extracellular trap formation. Additionally, treatment of MDGA attenuated neutrophil infiltration and lung damage on lipopolysaccharide-induced ARDS in mice. In conclusion, our results demonstrate that MDGA has anti-neutrophilic inflammatory effects and free-radical scavenging activity. We also suggest that MDGA has potential to serve as a lead for developing new therapeutics to treat ARDS.


ChemInform ◽  
2006 ◽  
Vol 37 (52) ◽  
Author(s):  
Yann-Lii Leu ◽  
Tsong-Long Hwang ◽  
Yu-Ming Chung ◽  
Pao-Yun Hong

Sign in / Sign up

Export Citation Format

Share Document