scholarly journals Oscillations of As Concentration and Electron-to-Hole Ratio in Si-Doped GaAs Nanowires

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 833 ◽  
Author(s):  
Vladimir G. Dubrovskii ◽  
Hadi Hijazi

III–V nanowires grown by the vapor–liquid–solid method often show self-regulated oscillations of group V concentration in a catalyst droplet over the monolayer growth cycle. We investigate theoretically how this effect influences the electron-to-hole ratio in Si-doped GaAs nanowires. Several factors influencing the As depletion in the vapor–liquid–solid nanowire growth are considered, including the time-scale separation between the steps of island growth and refill, the “stopping effect” at very low As concentrations, and the maximum As concentration at nucleation and desorption. It is shown that the As depletion effect is stronger for slower nanowire elongation rates and faster for island growth relative to refill. Larger concentration oscillations suppress the electron-to-hole ratio and substantially enhance the tendency for the p-type Si doping of GaAs nanowires, which is a typical picture in molecular beam epitaxy. The oscillations become weaker and may finally disappear in vapor deposition techniques such as hydride vapor phase epitaxy, where the n-type Si doping of GaAs nanowires is more easily achievable.

Nano Letters ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 4498-4504 ◽  
Author(s):  
Hadi Hijazi ◽  
Guillaume Monier ◽  
Evelyne Gil ◽  
Agnès Trassoudaine ◽  
Catherine Bougerol ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1681
Author(s):  
Hadi Hijazi ◽  
Vladimir G. Dubrovskii

The vapor–liquid–solid growth of III-V nanowires proceeds via the mononuclear regime, where only one island nucleates in each nanowire monolayer. The expansion of the monolayer is governed by the surface energetics depending on the monolayer size. Here, we study theoretically the role of surface energy in determining the monolayer morphology at a given coverage. The optimal monolayer configuration is obtained by minimizing the surface energy at different coverages for a set of energetic constants relevant for GaAs nanowires. In contrast to what has been assumed so far in the growth modeling of III-V nanowires, we find that the monolayer expansion may not be a continuous process. Rather, some portions of the already formed monolayer may dissolve on one of its sides, with simultaneous growth proceeding on the other side. These results are important for fundamental understanding of vapor–liquid–solid growth at the atomic level and have potential impacts on the statistics within the nanowire ensembles, crystal phase, and doping properties of III-V nanowires.


Author(s):  
Alla Nastovjak ◽  
David Shterental ◽  
Nataliya Shwartz

The results of the simulation of the GaAs nanowire self-catalyzed growth via vapor-liquid-solid mechanism using various pulse modes are presented in this work.


Author(s):  
Christoph Gutsche ◽  
Andrey Lysov ◽  
Ingo Regolin ◽  
Kai Blekker ◽  
Werner Prost ◽  
...  

2022 ◽  
Author(s):  
Lucas Güniat ◽  
Lea Ghisalberti ◽  
Li Wang ◽  
Christian Dais ◽  
Nicholas Morgan ◽  
...  

Large-scale patterning for vapor-liquid-solid growth of III-V nanowires is a challenge given the required feature size for patterning (45 to 60nm holes). In fact, arrays are traditionally manufactured using electron-beam...


Sign in / Sign up

Export Citation Format

Share Document