scholarly journals A Cost-Effective Approach for Non-Persistent Gold Nano-Architectures Production

Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1600 ◽  
Author(s):  
Giulia Giannone ◽  
Melissa Santi ◽  
Maria Laura Ermini ◽  
Domenico Cassano ◽  
Valerio Voliani

The effective exploitation of the intriguing theranostic features of noble metal nanoparticles for therapeutic applications is far from being a routine practice due to the persistence issue. In this regard, passion fruit-like nano-architectures (NAs), biodegradable and excretable all-in-one, nature-inspired platforms which jointly combine these characteristics with the appealing optical behaviors of noble metal nanoparticles, can offer a new alternative for theranostic applications. Besides the need for efficacious and innovative systems, the reliable and cost-effective production of nanomaterials is a pivotal subject for their translation to the clinical setting. Here, we demonstrate the production of a new cheaper class of degradable, ultrasmall-in-nano-architectures (dragon fruit NAs, dNAs) using polyethyleneimine (PEI) as a cationic polymer without affecting either their compositions or their physiological behaviors, compared to the previous NAs. In particular, the standardized protocol characterized in this work ensures the preparation of high gold-loading capacity nanoparticles, a peculiar characteristic that, synergically with the interesting properties of PEI, may unlock new possible applications previously precluded to the first version of NAs while reducing the hand-made production cost by three orders of magnitude.

Author(s):  
Nadja C. Bigall ◽  
Alexander Eychmüller

This article highlights our recent work concerning the synthesis of metal nanoparticles and their non-ordered superstructures. After a short introduction, the basic synthetic procedures are explained for the nanoparticles used for the assemblies. Furthermore, a fabrication method is itemized for very monodisperse platinum nanoparticles in aqueous solution ranging in diameter from 10 to 100 nm showing distinct optical properties. The next section deals with the synthesis of non-ordered hydro- and aerogels from the as-prepared sols. Very light large surface materials from gold, silver, platinum and gold–silver and platinum–silver sols can be fabricated with the given method. Another way to ultralight superstructures of noble metal nanoparticles using fungi as templates is described in the third section. Although fungi grow inside the colloidal solutions they can assemble the nanoparticles onto their surfaces. These hybrid systems are thus extremely interesting supported superstructures for applications in heterogeneous catalysis, since the numbers of nanoparticles on the fungus can easily be tuned, and the fabrication process is cost-effective, environmentally friendly and the organic templates can be easily removed by simple combustion for regaining the noble metal.


2021 ◽  
Vol 129 (12) ◽  
pp. 125302
Author(s):  
Wajeeha Saeed ◽  
Zeeshan Abbasi ◽  
Shumaila Majeed ◽  
Sohail Anjum Shahzad ◽  
Abdul Faheem Khan ◽  
...  

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 107 ◽  
Author(s):  
Ming Qin ◽  
Qing Chang ◽  
Yinkai Yu ◽  
Hongjing Wu

By the deposition of noble metal nanoparticles on a metal oxide substrate with a specific micro-/nanostructure, namely, yolk-shell structure, a remarkable improvement in photocatalytic performance can be achieved by the composites. Nevertheless, noble metal nanoparticles only distribute on the surface shell of metal oxide substrates when the conventional wet-chemistry reduction approach is employed. Herein, we proposed a novel acoustic levitation synthesis of Pt nanoparticles deposited on yolk-shell La2O3. The composites not only displayed well-defined, homogeneous distribution of Pt NPs on the exterior shell of La2O3 and the interior La2O3 core, but an enhanced chemical interaction between Pt and La2O3. The unique structure not only can display improved photocatalytic degradation rate toward methyl orange, but also may show great potential in fields of hydrogen generation, environmental protection, etc. The novel acoustic levitation synthesis can supplement the methodology of synthesizing well dispersed noble metal oxides over the whole yolk-shell structure through noble metal NPs deposition method.


2006 ◽  
Vol 86 (4) ◽  
pp. 477-480 ◽  
Author(s):  
C.E. Allmond ◽  
A.T. Sellinger ◽  
K. Gogick ◽  
J.M. Fitz-Gerald

Sign in / Sign up

Export Citation Format

Share Document