scholarly journals Modeling and Numerical Investigation of Transient Two-Phase Flow with Liquid Phase Change in Porous Media

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 183
Author(s):  
Fei He ◽  
Wenjie Dong ◽  
Jianhua Wang

Two-phase flow with phase change in microstructure or nanostructure is an important issue in many fronts and critical applications nowadays, but with a lack of comprehensive understanding of the mechanism. This paper numerically investigates the transient behavior of two-phase flow with liquid phase change in the porous media, which consists of a series of connected pores at micro and nanoscale with the transient form of the semi-mixed model and self-compiled programs. Transient variation and spatial distribution of structure temperature, thermal non-equilibrium characteristic, phase change location and fluid-driven pressure are obtained and analyzed, and effects of initial system temperature, structure parameter and material property on the transient behaviors of two-phase flow and fluid-structure coupling heat transfer are discussed. The numerical simulations indicate that the two-phase flow with phase change in porous media is complex and ever-changing before reaching a steady state and affected by the above-mentioned three kinds of parameters significantly. Particularly, distinct phenomena of transient heat transfer deterioration and vapor block are discovered, and it is revealed that the transient heat transfer deterioration and vapor block are more serious in a porous matrix with smaller porosity and made of materials with higher heat capacity and density.

2001 ◽  
Vol 27 (3) ◽  
pp. 477-526 ◽  
Author(s):  
S. Békri ◽  
O. Vizika ◽  
J.-F. Thovert ◽  
P.M. Adler

Algorithms ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 117
Author(s):  
Mohamed F. El-Amin

In the current paper, an iterative algorithm is developed to simulate the problem of two-phase flow with heat transfer in porous media. The convective body force caused by heat transfer is described by Boussinesq approximation throughout with the governing equations, namely, pressure, saturation, and energy. The two coupled equations of pressure and saturation are solved using the implicit pressure-explicit saturation (IMPES) scheme, while the energy equation is treated implicitly, and the scheme is called iterative implicit pressure, explicit saturation, implicit temperature (I-IMPES-IMT). In order to calculate the pressure implicitly, the equations of pressure and saturation are coupled by linearizing the capillary pressure which is a function of saturation. After that, the equation of saturation is solved explicitly. Then, the velocity is computed which is used in the energy equation to calculate the temperature implicitly. The cell-centered finite difference (CCFD) method is utilized for spatial discretization. Furthermore, a relaxation factor along is used with the Courant–Friedrichs–Lewy (CFL) condition. Finally, in order to illustrate the efficiency of the developed algorithm, error estimates for saturation and temperature for different values of time steps and number of iterations are presented. Moreover, numerical examples of different physical scenarios of heterogamous media are presented.


Sign in / Sign up

Export Citation Format

Share Document