temperature structure parameter
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 1)

H-INDEX

8
(FIVE YEARS 0)

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 183
Author(s):  
Fei He ◽  
Wenjie Dong ◽  
Jianhua Wang

Two-phase flow with phase change in microstructure or nanostructure is an important issue in many fronts and critical applications nowadays, but with a lack of comprehensive understanding of the mechanism. This paper numerically investigates the transient behavior of two-phase flow with liquid phase change in the porous media, which consists of a series of connected pores at micro and nanoscale with the transient form of the semi-mixed model and self-compiled programs. Transient variation and spatial distribution of structure temperature, thermal non-equilibrium characteristic, phase change location and fluid-driven pressure are obtained and analyzed, and effects of initial system temperature, structure parameter and material property on the transient behaviors of two-phase flow and fluid-structure coupling heat transfer are discussed. The numerical simulations indicate that the two-phase flow with phase change in porous media is complex and ever-changing before reaching a steady state and affected by the above-mentioned three kinds of parameters significantly. Particularly, distinct phenomena of transient heat transfer deterioration and vapor block are discovered, and it is revealed that the transient heat transfer deterioration and vapor block are more serious in a porous matrix with smaller porosity and made of materials with higher heat capacity and density.


2018 ◽  
Vol 35 (3) ◽  
pp. 619-642 ◽  
Author(s):  
Ben B. Balsley ◽  
Dale A. Lawrence ◽  
David C. Fritts ◽  
Ling Wang ◽  
Kam Wan ◽  
...  

AbstractA new platform for high-resolution in situ measurements in the lower troposphere is described and its capabilities are demonstrated. The platform is the small GPS-controlled DataHawk unmanned aerial system (UAS), and measurements were performed under stratified atmospheric conditions at Dugway Proving Ground, Utah, on 11 October 2012. The measurements included spiraling vertical profiles of temperature and horizontal wind vectors, from which the potential temperature θ, mechanical energy dissipation rate ε, Brunt–Väsälä frequency N, temperature structure parameter CT2, Thorpe and Ozmidov scales LT and LO, and Richardson number Ri were inferred. Profiles of these quantities from ~50 to 400 m reveal apparent gravity wave modulation at larger scales, persistent sheet-and-layer structures at scales of ~30–100 m, and several layers exhibiting significant correlations of large ε, CT2, LT, and small Ri. Smaller-scale flow features suggest local gravity waves and Kelvin–Helmholtz instabilities exhibiting strong correlations, yielding significant vertical displacements and inducing turbulence and mixing at smaller scales. Comparisons of these results with a direct numerical simulation (DNS) of similar multiscale dynamics indicate close agreement between measured and modeled layer character and evolution, small-scale dynamics, and turbulence intensities. In particular, a detailed examination of the potential biases in inferred quantities and/or misinterpretation of the underlying dynamics as a result of the specific DataHawk sampling trajectory is carried out using virtual sampling paths through the DNS and comparing these with the DataHawk measurements.


2014 ◽  
Vol 34 (5) ◽  
pp. 0501001
Author(s):  
吴晓庆 Wu Xiaoqing ◽  
黄宏华 Huang Honghua ◽  
钱仙妹 Qian Xianmei ◽  
汪平 Wang Ping ◽  
崔朝龙 Cui Chaolong

2013 ◽  
Vol 150 (2) ◽  
pp. 215-233 ◽  
Author(s):  
Igor Petenko ◽  
Giangiuseppe Mastrantonio ◽  
Angelo Viola ◽  
Stefania Argentini ◽  
Ilaria Pietroni

2013 ◽  
Vol 30 (8) ◽  
pp. 1604-1615 ◽  
Author(s):  
C. R. Wood ◽  
R. D. Kouznetsov ◽  
R. Gierens ◽  
A. Nordbo ◽  
L. Järvi ◽  
...  

Abstract Two commercial large-aperture scintillometers, Scintec BLS900, were tested on pathlengths of 1840 and 4200 m at about 45–65 m above ground in Helsinki, Finland. From July 2011 through June 2012, large variability in diurnal and annual cycles of both the temperature structure parameter and sensible heat flux were observed. Scintillometer data were compared with data from two eddy-covariance stations. A robust method was developed for the calculation of from raw sonic-anemometer data. In contrast to many earlier studies that solely present the values of , the main focus here is on comparisons of itself. This has advantages, because optical-wavelength scintillometers measure with few assumptions, while the determination of implies the applicability of the Monin–Obukhov similarity theory, which has several inherent limitations. The histograms of compare well between sonic and scintillometer. In-depth analysis is focused on one of the scintillometer paths: both and comparisons gave similar and surprisingly high correlation coefficients (0.85 for and 0.84–0.95 for in unstable conditions), given the differences between the two measurement techniques, substantial sensor separation, and different source areas.


Sign in / Sign up

Export Citation Format

Share Document