scholarly journals Elastostatics of Bernoulli–Euler Beams Resting on Displacement-Driven Nonlocal Foundation

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 573
Author(s):  
Marzia Sara Vaccaro ◽  
Francesco Paolo Pinnola ◽  
Francesco Marotti de Sciarra ◽  
Raffaele Barretta

The simplest elasticity model of the foundation underlying a slender beam under flexure was conceived by Winkler, requiring local proportionality between soil reactions and beam deflection. Such an approach leads to well-posed elastostatic and elastodynamic problems, but as highlighted by Wieghardt, it provides elastic responses that are not technically significant for a wide variety of engineering applications. Thus, Winkler’s model was replaced by Wieghardt himself by assuming that the beam deflection is the convolution integral between soil reaction field and an averaging kernel. Due to conflict between constitutive and kinematic compatibility requirements, the corresponding elastic problem of an inflected beam resting on a Wieghardt foundation is ill-posed. Modifications of the original Wieghardt model were proposed by introducing fictitious boundary concentrated forces of constitutive type, which are physically questionable, being significantly influenced on prescribed kinematic boundary conditions. Inherent difficulties and issues are overcome in the present research using a displacement-driven nonlocal integral strategy obtained by swapping the input and output fields involved in Wieghardt’s original formulation. That is, nonlocal soil reaction fields are the output of integral convolutions of beam deflection fields with an averaging kernel. Equipping the displacement-driven nonlocal integral law with the bi-exponential averaging kernel, an equivalent nonlocal differential problem, supplemented with non-standard constitutive boundary conditions involving nonlocal soil reactions, is established. As a key implication, the integrodifferential equations governing the elastostatic problem of an inflected elastic slender beam resting on a displacement-driven nonlocal integral foundation are replaced with much simpler differential equations supplemented with kinematic, static, and new constitutive boundary conditions. The proposed nonlocal approach is illustrated by examining and analytically solving exemplar problems of structural engineering. Benchmark solutions for numerical analyses are also detected.

Author(s):  
Marzia Sara Vaccaro ◽  
Francesco Paolo Pinnola ◽  
Francesco Marotti de Sciarra ◽  
Raffaele Barretta

The simplest elasticity model of foundation underlying a slender beam under flexure was conceived by Winkler, requiring local proportionality between soil reactions and beam deflection. Such an approach leads to well-posed elastostatic and elastodynamic problems, but, as highlighted by Wieghardt, it provides elastic responses which are not technically significant for a wide variety of engineering applications. Thus, Winkler's model was replaced by Wieghardt himself by assuming that the beam deflection is the convolution integral between soil reaction field and an averaging kernel. Due to conflict between constitutive and kinematic compatibility requirements, the corresponding elastic problem of an inflected beam resting on Wieghardt foundation results to be ill-posed. Modifications of the original Wieghardt model were proposed by introducing fictitious boundary concentrated forces of constitutive type, which are physically questionable, being significantly influenced on prescribed kinematic boundary conditions. Inherent difficulties and issues are overcome in the present research using a displacement-driven nonlocal integral strategy got by swapping input and output fields involved in Wieghardt's original formulation. That is, nonlocal soil reaction fields are output of integral convolutions of beam deflection fields with an averaging kernel. Equipping the displacement-driven nonlocal integral law with the bi-exponential averaging kernel, an equivalent nonlocal differential problem, supplemented with non-standard constitutive boundary conditions involving nonlocal soil reactions, is established. As a key implication, the integro-differential equations governing the elastostatic problem of an inflected elastic slender beam resting on displacement-driven nonlocal integral foundation are replaced with much simpler differential equations supplemented with kinematic, static and new constitutive boundary conditions. The proposed nonlocal approach is illustrated by examining and analytically solving exemplar problems of structural engineering. Benchmark solutions for numerical analyses are also detected.


Geophysics ◽  
1988 ◽  
Vol 53 (5) ◽  
pp. 593-603 ◽  
Author(s):  
Louis H. Howell ◽  
Lloyd N. Trefethen

Absorbing boundary conditions for wave‐equation migration were introduced by Clayton and Engquist. We show that one of these boundary conditions, the B2 (second‐order) condition applied with the 45° (third‐order) migration equation, is ill‐posed. In fact, this boundary condition is subject to two distinct mechanisms of ill‐posedness: a Kreiss mode with finite speed at one boundary and another mode of a new kind involving wave propagation at unbounded speed back and forth between two boundaries. Unlike B2, the third‐order Clayton‐Engquist boundary condition B3 is well‐posed. However, we show that it is impossible for any boundary condition of Clayton‐Engquist type of order higher than one to be well‐posed with a migration equation whose order is higher than three.


2012 ◽  
Vol 58 (211) ◽  
pp. 1008-1020 ◽  
Author(s):  
Michelle R. Koutnik ◽  
Edwin D. Waddington

AbstractWhen an ice-flow model is constrained by data that exist over only a section of an ice sheet, it is computationally advantageous to limit the model domain to only that section. For example, a limited domain near an ice-core site might cross an ice divide, and have no termini. Accurately calculating ice-sheet evolution in response to spatial and temporal variations in climate and ice flow depends on accurately calculating the transient ice flux crossing the limited-domain boundaries. In the absence of information from outside the limited domain, this is an ill-posed problem. Boundary conditions based only on information from inside the limited domain can produce ice-sheet evolution incompatible with the full ice sheet within which we suppose it to exist. We use impulse-response functions to provide boundary values that are informed by the external ice sheet, without conventionally 'nesting' the limited domain in a full ice-sheet model. Evolution within a limited domain can then be consistent with evolution of boundary conditions is designed for future use in affected the limited domain can be inferred from the full ice sheet. Our treatment of limited-domain an inverse problem in which external changes that data from within the limited domain.


2020 ◽  
Vol 28 (6) ◽  
pp. 829-847
Author(s):  
Hua Huang ◽  
Chengwu Lu ◽  
Lingli Zhang ◽  
Weiwei Wang

AbstractThe projection data obtained using the computed tomography (CT) technique are often incomplete and inconsistent owing to the radiation exposure and practical environment of the CT process, which may lead to a few-view reconstruction problem. Reconstructing an object from few projection views is often an ill-posed inverse problem. To solve such problems, regularization is an effective technique, in which the ill-posed problem is approximated considering a family of neighboring well-posed problems. In this study, we considered the {\ell_{1/2}} regularization to solve such ill-posed problems. Subsequently, the half thresholding algorithm was employed to solve the {\ell_{1/2}} regularization-based problem. The convergence analysis of the proposed method was performed, and the error bound between the reference image and reconstructed image was clarified. Finally, the stability of the proposed method was analyzed. The result of numerical experiments demonstrated that the proposed method can outperform the classical reconstruction algorithms in terms of noise suppression and preserving the details of the reconstructed image.


Author(s):  
Yu Fu ◽  
Jianjun Yao ◽  
Zhenshuai Wan ◽  
Gang Zhao

In this investigation, the free vibration analysis of laminated composite rectangular plates with general boundary conditions is performed with a modified Fourier series method. Vibration characteristics of the plates have been obtained via an energy function represented in the general coordinates, in which the displacement and rotation in each direction is described as an improved form of double Fourier cosine series and several closed-form auxiliary functions to eliminate any possible jumps and boundary discontinuities. All the expansion coefficients are then treated as the generalized coordinates and determined by Rayleigh-Ritz method. The convergence and reliability of the current method are verified by comparing with the results in the literature and those of Finite Element Analysis. The effects of boundary conditions and geometric parameters on the frequencies are discussed as well. Finally, numerous new results for laminated composite rectangular plates with different geometric parameters are presented for various boundary conditions, which may serve as benchmark solutions for future research.


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Qi Dong ◽  
Q. M. Li ◽  
Jinyang Zheng

Strain growth is a phenomenon observed in the elastic response of containment vessels subjected to internal blast loading. The local dynamic response of a containment vessel may become larger in a later stage than its response in the earlier stage. In order to understand the possible mechanisms of the strain growth phenomenon in a cylindrical vessel, dynamic elastic responses of a finite-length cylindrical shell with different boundary conditions subjected to internal pressure pulse are studied by finite-element simulation using LS-DYNA. It is found that the strain growth in a finite-length cylindrical shell with sliding–sliding boundary conditions is caused by nonlinear modal coupling. Strain growth in a finite-length cylindrical shell with free–free or simply supported boundary conditions is primarily caused by the linear modal superposition, possibly enhanced by the nonlinear modal coupling. The understanding of these strain growth mechanisms can guide the design of cylindrical containment vessels.


Sign in / Sign up

Export Citation Format

Share Document