scholarly journals Existence and uniqueness of finite beam deflection on nonlinear non-uniform elastic foundation with arbitrary well-posed boundary condition

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Sung Woo Choi
2021 ◽  
Vol 6 (10) ◽  
pp. 10652-10678
Author(s):  
Sung Woo Choi ◽  

<abstract><p>Characteristic equations for the whole class of integral operators arising from arbitrary well-posed two-point boundary value problems of finite beam deflection resting on elastic foundation are obtained in terms of $ 4 \times 4 $ matrices in block-diagonal form with explicit $ 2 \times 2 $ blocks.</p></abstract>


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 573
Author(s):  
Marzia Sara Vaccaro ◽  
Francesco Paolo Pinnola ◽  
Francesco Marotti de Sciarra ◽  
Raffaele Barretta

The simplest elasticity model of the foundation underlying a slender beam under flexure was conceived by Winkler, requiring local proportionality between soil reactions and beam deflection. Such an approach leads to well-posed elastostatic and elastodynamic problems, but as highlighted by Wieghardt, it provides elastic responses that are not technically significant for a wide variety of engineering applications. Thus, Winkler’s model was replaced by Wieghardt himself by assuming that the beam deflection is the convolution integral between soil reaction field and an averaging kernel. Due to conflict between constitutive and kinematic compatibility requirements, the corresponding elastic problem of an inflected beam resting on a Wieghardt foundation is ill-posed. Modifications of the original Wieghardt model were proposed by introducing fictitious boundary concentrated forces of constitutive type, which are physically questionable, being significantly influenced on prescribed kinematic boundary conditions. Inherent difficulties and issues are overcome in the present research using a displacement-driven nonlocal integral strategy obtained by swapping the input and output fields involved in Wieghardt’s original formulation. That is, nonlocal soil reaction fields are the output of integral convolutions of beam deflection fields with an averaging kernel. Equipping the displacement-driven nonlocal integral law with the bi-exponential averaging kernel, an equivalent nonlocal differential problem, supplemented with non-standard constitutive boundary conditions involving nonlocal soil reactions, is established. As a key implication, the integrodifferential equations governing the elastostatic problem of an inflected elastic slender beam resting on a displacement-driven nonlocal integral foundation are replaced with much simpler differential equations supplemented with kinematic, static, and new constitutive boundary conditions. The proposed nonlocal approach is illustrated by examining and analytically solving exemplar problems of structural engineering. Benchmark solutions for numerical analyses are also detected.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Jamilu Abubakar ◽  
Piyachat Borisut ◽  
Kanokwan Sitthithakerngkiet

Abstract This study investigates the solutions of an impulsive fractional differential equation incorporated with a pantograph. This work extends and improves some results of the impulsive fractional differential equation. A differential equation of an impulsive fractional pantograph with a more general anti-periodic boundary condition is proposed. By employing the well-known fixed point theorems of Banach and Krasnoselskii, the existence and uniqueness of the solution of the proposed problem are established. Furthermore, two examples are presented to support our theoretical analysis.


2020 ◽  
Vol 18 (1) ◽  
pp. 1302-1316
Author(s):  
Guobing Fan ◽  
Zhifeng Yang

Abstract In this paper, we investigate the problem for optimal control of a viscous generalized \theta -type dispersive equation (VG \theta -type DE) with weak dissipation. First, we prove the existence and uniqueness of weak solution to the equation. Then, we present the optimal control of a VG \theta -type DE with weak dissipation under boundary condition and prove the existence of optimal solution to the problem.


2005 ◽  
Vol 15 (03) ◽  
pp. 343-374 ◽  
Author(s):  
GUY BAYADA ◽  
NADIA BENHABOUCHA ◽  
MICHÈLE CHAMBAT

A thin micropolar fluid with new boundary conditions at the fluid-solid interface, linking the velocity and the microrotation by introducing a so-called "boundary viscosity" is presented. The existence and uniqueness of the solution is proved and, by way of asymptotic analysis, a generalized micropolar Reynolds equation is derived. Numerical results show the influence of the new boundary conditions for the load and the friction coefficient. Comparisons are made with other works retaining a no slip boundary condition.


Author(s):  
Hong Wang ◽  
Danping Yang

AbstractFractional differential equation (FDE) provides an accurate description of transport processes that exhibit anomalous diffusion but introduces new mathematical difficulties that have not been encountered in the context of integer-order differential equation. For example, the wellposedness of the Dirichlet boundary-value problem of one-dimensional variable-coefficient FDE is not fully resolved yet. In addition, Neumann boundary-value problem of FDE poses significant challenges, partly due to the fact that different forms of FDE and different types of Neumann boundary condition have been proposed in the literature depending on different applications.We conduct preliminary mathematical analysis of the wellposedness of different Neumann boundary-value problems of the FDEs. We prove that five out of the nine combinations of three different forms of FDEs that are closed by three types of Neumann boundary conditions are well posed and the remaining four do not admit a solution. In particular, for each form of the FDE there is at least one type of Neumann boundary condition such that the corresponding boundary-value problem is well posed, but there is also at least one type of Neumann boundary condition such that the corresponding boundary-value problem is ill posed. This fully demonstrates the subtlety of the study of FDE, and, in particular, the crucial mathematical modeling question: which combination of FDE and fractional Neumann boundary condition, rather than which form of FDE or fractional Neumann boundary condition, should be used and studied in applications.


Sign in / Sign up

Export Citation Format

Share Document