scholarly journals Dielectric Confinement and Exciton Fine Structure in Lead Halide Perovskite Nanoplatelets

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3054
Author(s):  
Amal Ghribi ◽  
Rim Ben Aich ◽  
Kaïs Boujdaria ◽  
Thierry Barisien ◽  
Laurent Legrand ◽  
...  

Owing to their flexible chemical synthesis and the ability to shape nanostructures, lead halide perovskites have emerged as high potential materials for optoelectronic devices. Here, we investigate the excitonic band edge states and their energies levels in colloidal inorganic lead halide nanoplatelets, particularly the influence of dielectric effects, in a thin quasi-2D system. We use a model including band offset and dielectric confinements in the presence of Coulomb interaction. Short- and long-range contributions, modified by dielectric effects, are also derived, leading to a full modelization of the exciton fine structure, in cubic, tetragonal and orthorhombic phases. The fine splitting structure, including dark and bright excitonic states, is discussed and compared to recent experimental results, showing the importance of both confinement and dielectric contributions.

2020 ◽  
Vol 7 (2) ◽  
pp. 397-410 ◽  
Author(s):  
Handong Jin ◽  
Elke Debroye ◽  
Masoumeh Keshavarz ◽  
Ivan G. Scheblykin ◽  
Maarten B. J. Roeffaers ◽  
...  

The recent surge of scientific interest for lead halide perovskite semiconductors and optoelectronic devices has seen a mix of materials science sub-fields converge on the same “magical” crystal structure.


2020 ◽  
Author(s):  
Yu-Hao Deng

<p>Lead halide perovskites have achieved substantial success in various optoelectronic devices owing to their remarkable physical properties. However, lead (Pb) as a heavy metal, long-lasting toxic to the body has become a health hazard for researchers. How to completely remove the residual lead in the laboratory and prevent lead from entering the human body have always been an important topic in laboratory safety. Here we develop an operable method to treat lead sources with low-cost and eco-friendly chelating agent (EDTA-2Na), which can reduce the concentration of free lead ions to 10<sup>-11 </sup>ppm theoretically. Moreover, experiments have demonstrated that the chelating agent possess a strong ability on the removal of lead ions from the lab surface, gloves and lab coats. This approach paves the way to protect the health of researchers in lead halide perovskite laboratory. </p>


2020 ◽  
Author(s):  
Yu-Hao Deng

<p>Lead halide perovskites have achieved substantial success in various optoelectronic devices owing to their remarkable physical properties. However, lead (Pb) as a heavy metal, long-lasting toxic to the body has become a health hazard for researchers. How to completely remove the residual lead in the laboratory and prevent lead from entering the human body have always been an important topic in laboratory safety. Here we develop an operable method to treat lead sources with low-cost and eco-friendly chelating agent (EDTA-2Na), which can reduce the concentration of free lead ions to 10<sup>-11 </sup>ppm theoretically. Moreover, experiments have demonstrated that the chelating agent possess a strong ability on the removal of lead ions from the lab surface, gloves and lab coats. This approach paves the way to protect the health of researchers in lead halide perovskite laboratory. </p>


2020 ◽  
Author(s):  
Yu-Hao Deng

<p>Lead halide perovskites have achieved substantial success in various optoelectronic devices owing to their remarkable physical properties. However, lead (Pb) as a heavy metal, long-lasting toxic to the body has become a health hazard for researchers. How to completely remove the residual lead in the laboratory and prevent lead from entering the human body have always been an important topic in laboratory safety. Here we develop an operable method to treat lead sources with low-cost and eco-friendly chelating agent (EDTA-2Na), which can reduce the concentration of free lead ions to 10<sup>-11 </sup>ppm theoretically. Moreover, experiments have demonstrated that the chelating agent possess a strong ability on the removal of lead ions from the lab surface, gloves and lab coats. This approach paves the way to protect the health of researchers in lead halide perovskite laboratory. </p>


Author(s):  
Naomi Falsini ◽  
Andrea Ristori ◽  
Francesco Biccari ◽  
Nicola Calisi ◽  
Giammarco Roini ◽  
...  

AbstractInorganic metal halide perovskites are relevant semiconductors for optoelectronic devices. The successful deposition of thin films of CsPbBr3 and CsPbCl3 has recently been obtained by Radio-Frequency magnetron sputtering. In this work we compare the morphological, structural and optical characteristics of the two materials obtained with this deposition technique. A detailed photoluminescence (PL) spectroscopy study of the as-grown samples was conducted at the macro and micro scale in a wide temperature range (10-300 K) to fully characterize the PL on sample areas of square centimeters, to assess the origin of the inhomogeneous broadening and to quantify the PL quantum yield quenching. Our results prove that this technique allows for the realization of high quality nanometric films with controlled thickness of relevance for optoelectronic applications.


2020 ◽  
Author(s):  
Naomi Falsini ◽  
Andrea Ristori ◽  
Francesco Biccari ◽  
Nicola Calisi ◽  
Giammarco Roini ◽  
...  

Abstract Inorganic metal halide perovskites are relevant semiconductors for optoelectronic devices. In this work the successful deposition of thin films of CsPbBr3 and CsPbCl3 have been obtained by Radio-Frequency magnetron sputtering. A detailed photoluminescence (PL) spectroscopy study of the as-grown samples was conducted at the macro and micro scale in a wide temperature range (10-300 K) to fully characterize the PL on sample areas of square centimeters, to assess the origin of the inhomogeneous broadening and to quantify the PL quantum yield quenching. Our results prove that this technique allows for the realization of high quality nanometric films with controlled thickness of relevance for optoelectronic applications.


Nanoscale ◽  
2021 ◽  
Author(s):  
Syed Akhil ◽  
V.G.Vasavi Dutt ◽  
Nimai Mishra

Recently lead halide perovskite nanocrystals (PNCs) have attracted intense interest as promising active materials for optoelectronic devices. However, their extensive applications are still hampered by poor stability in ambient conditions....


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 667 ◽  
Author(s):  
Edson Meyer ◽  
Dorcas Mutukwa ◽  
Nyengerai Zingwe ◽  
Raymond Taziwa

Perovskite solar cells employ lead halide perovskite materials as light absorbers. These perovskite materials have shown exceptional optoelectronic properties, making perovskite solar cells a fast-growing solar technology. Perovskite solar cells have achieved a record efficiency of over 20%, which has superseded the efficiency of Gräztel dye-sensitized solar cell (DSSC) technology. Even with their exceptional optical and electric properties, lead halide perovskites suffer from poor stability. They degrade when exposed to moisture, heat, and UV radiation, which has hindered their commercialization. Moreover, halide perovskite materials consist of lead, which is toxic. Thus, exposure to these materials leads to detrimental effects on human health. Halide double perovskites with A2B′B″X6 (A = Cs, MA; B′ = Bi, Sb; B″ = Cu, Ag, and X = Cl, Br, I) have been investigated as potential replacements of lead halide perovskites. This work focuses on providing a detailed review of the structural, optical, and stability properties of these proposed perovskites as well as their viability to replace lead halide perovskites. The triumphs and challenges of the proposed lead-free A2B′B″X6 double perovskites are discussed here in detail.


2020 ◽  
Vol 13 (6) ◽  
pp. 1888-1891
Author(s):  
Alexander Colsmann ◽  
Tobias Leonhard ◽  
Alexander D. Schulz ◽  
Holger Röhm

This comment analyzes pitfalls when investigating piezoresponse and ferroelectricity in organic-metal halide perovskite thin films.


Sign in / Sign up

Export Citation Format

Share Document