scholarly journals Effect of Amorphous Crosslinker on Phase Behavior and Electro-Optic Response of Polymer-Stabilized Blue Phase Liquid Crystals

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 48
Author(s):  
Kyung Min Lee ◽  
Urice Tohgha ◽  
Timothy J. Bunning ◽  
Michael E. McConney ◽  
Nicholas P. Godman

Blue phase liquid crystals (BPLCs) composed of double-twisted cholesteric helices are promising materials for use in next-generation displays, optical components, and photonics applications. However, BPLCs are only observed in a narrow temperature range of 0.5–3 °C and must be stabilized with a polymer network. Here, we report on controlling the phase behavior of BPLCs by varying the concentration of an amorphous crosslinker (pentaerythritol triacrylate (PETA)). LC mixtures without amorphous crosslinker display narrow phase transition temperatures from isotropic to the blue phase-II (BP-II), blue phase-I (BP-I), and cholesteric phases, but the addition of PETA stabilizes the BP-I phase. A PETA content above 3 wt% prevents the formation of the simple cubic BP-II phase and induces a direct transition from the isotropic to the BP-I phase. PETA widens the temperature window of BP-I from ~6.8 °C for BPLC without PETA to ~15 °C for BPLC with 4 wt% PETA. The BPLCs with 3 and 4 wt% PETA are stabilized using polymer networks via in situ photopolymerization. Polymer-stabilized BPLC with 3 wt% PETA showed switching between reflective to transparent states with response times of 400–500 μs when an AC field was applied, whereas the application of a DC field induced a large color change from green to red.

2019 ◽  
Vol 50 (1) ◽  
pp. 1788-1791
Author(s):  
Yifan Feng ◽  
Changli Sun ◽  
Shenghao Zha ◽  
Jiangang Lu

2016 ◽  
Vol 108 (8) ◽  
pp. 081107
Author(s):  
B. Atorf ◽  
H. Rasouli ◽  
G. Nordendorf ◽  
D. Wilkes ◽  
H. Kitzerow

2013 ◽  
Vol 44 (1) ◽  
pp. 254-257 ◽  
Author(s):  
Yasuhiro Haseba ◽  
Shin-ichi Yamamoto ◽  
Kohki Sago ◽  
Akihiro Takata ◽  
Hitoshi Tobata

2010 ◽  
Vol 96 (11) ◽  
pp. 113505 ◽  
Author(s):  
Yi-Hsin Lin ◽  
Hung-Shan Chen ◽  
Hung-Chun Lin ◽  
Yu-Shih Tsou ◽  
Hsu-Kuan Hsu ◽  
...  

2018 ◽  
Vol 10 (4) ◽  
pp. 100 ◽  
Author(s):  
Marzena Maria Sala-Tefelska ◽  
Kamil Orzechowski ◽  
Filip A. Sala ◽  
Tomasz R. Woliński ◽  
Olga Strzeżysz ◽  
...  

In this paper, the influence of homeotropic and homogeneous orienting layers is presented in a cell filled with chiral nematic liquid crystals stabilized in a blue phase. The change of selective Bragg reflection from red to blue light was observed for homogeneous layers in rectangular geometries. The growth of blue phase crystals domains in a glass cell as well an influence of temperature and the electric field on such a structure, are also presented. Full Text: PDF ReferencesF. Reinitzer, Beitrage zur Kenntniss des Cholestherins, Monatsh Chem. 9, 421-441, (1888). CrossRef J. Yan, M. Jiao, L. Rao, and S.-T. Wu, "Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite", Opt. Express 18, 11450-11455 (2010) CrossRef Y. Chen, D. Xu, S.-T. Wu, S.-i. Yamamoto, Y. Haseba, "A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal", Appl. Phys. Lett. 102, 141116 (2013) CrossRef Y. Huang, H. Chen, G. Tan, H. Tobata, S. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, "Optimized blue-phase liquid crystal for field-sequential-color displays", Opt. Mater. Express 7, 641-650 (2017) CrossRef V. Sridurai, M. Mathews, C. V. Yelamaggad, G. G. Nair, "Electrically Tunable Soft Photonic Gel Formed by Blue Phase Liquid Crystal for Switchable Color-Reflecting Mirror", ACS Appl. Mater. Interfaces, 9 (45), 39569-39575 (2017) CrossRef E. Oton, E. Netter, T. Nakano, Y. D.-Katayama, F. Inoue, "Monodomain Blue Phase Liquid Crystal Layers for Phase Modulation", Sci. Rep. vol.7, 44575 (2017) CrossRef Q. Liu, D. Luo, X. Zhang, S. Li, Z. Tian, "Refractive index and absorption coefficient of blue phase liquid crystal in terahertz band", Liq. Cryst., Vol. 44, No. 2, pp. 348-354 (2017) CrossRef Y. Li, Y. Liu, Q. Li, S.-T. Wu, "Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film", Appl. Opt., Vol. 51, No. 14, pp. 2568-2572 (2012) CrossRef M. M. Sala-Tefelska, K. Orzechowski M. Sierakowski, A. Siarkowska, T.R. Woliński, O. Strzeżysz, P. Kula, "Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains", Opt. Mater. 75, 211-215, (2018) CrossRef H. Claus, O. Willekens, O. Chojnowska, R. Dąbrowski, J. Beeckman, K. Neyts, "Inducing monodomain blue phase liquid crystals by long-lasting voltage application during temperature variation", Liq. Cryst. 43 (5), 688-693, (2016) CrossRef M. Takahashi, T. Ohkawa, H. Yoshida, J. Fukuda, H. Kikuchi, M. Ozaki, "Orientation of liquid crystalline blue phases on unidirectionally orienting surfaces", J. Phys. D: Appl. Phys. 51 (10), 104003 (2018) CrossRef P. Joshi, X. Shang, J. De Smet, E. Islamai, D. Cuypers, G. Van Steenberge, S. Van Vlierberghe, P. Dubruel, H. De Smet, "On the effect of alignment layers on blue phase liquid crystals", Appl. Phys. Lett. 106, 101105 (2015) CrossRef K. Orzechowski, M.W. Sierakowski, M. Sala-Tefelska, P. Joshi, T.R. Woliński, H.D. Smet, "Polarization properties of cubic blue phases of a cholesteric liquid crystal", Opt. Mater. 69, 259-264 (2017) CrossRef P.-J. Chen, M. Chen, S.-Y. Ni, H.-S. Chen, Y.-H. Lin, "Influence of alignment layers on crystal growth of polymer-stabilized blue phase liquid crystals", pt. Mater. Express 6, 1003-1010 (2016) CrossRef CrossRef


2017 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Jose Francisco Algorri ◽  
Virginia Urruchi ◽  
Noureddine Bennis ◽  
Jose Manuel Sanchez-Pena

Nematic liquid crystal (LC)-based beam steering has been reported for wide applications. However, for conventional nematic LC beam steering the thickness is of several microns in order to have a wider deflection angle. The response time is relatively slow and the diffraction efficiency is low. In this work, novel beam steering based on polymer stabilized blue phase liquid crystal (PS-BPLC) has been designed and theoretically analyzed. This special mesophase of the chiral doped nematic LC has several advantageous characteristics, for example no need for alignment layers, microsecond response time and an isotropic voltage-off state. The results reveal control over phase retardation. The direction of the steered beam can be tuned by voltage. Depending on voltage configuration, either diffractive beam steering (0.5deg deviation for 1st order) or a tunable continuous phase (tunable deviation of 0.002deg) can be obtained. In the first case, the deflection angle could be tuned by stacks of samples. The second option has the same phase shift for the TE and TM modes so unpolarized light could be used. Full Text: PDF ReferencesF. Feng, I. White, T. Wilkinson, "Free Space Communications With Beam Steering a Two-Electrode Tapered Laser Diode Using Liquid-Crystal SLM", J. Lightwave Technol. 31, 2001 (2013). CrossRef E. Oton, J. Perez-Fernandez, D. Lopez-Molina, X. Quintana, J.M. Oton, M.A. Geday, "Reliability of Liquid Crystals in Space Photonics", IEEE Photonics Journal 7, 1 (2015). CrossRef J. Stockley, S. Serati, "Multi-access laser terminal using liquid crystal beam steering", IEEE in Aerospace Conference, 1972 (2005). CrossRef D. Zografopoulos and E. Kriezis, "Switchable beam steering with zenithal bistable liquid-crystal blazed gratings", Opt. Lett. 39, 5842 (2014). CrossRef Benedikt Scherger, et al., "Discrete Terahertz Beam Steering with an Electrically Controlled Liquid Crystal Device", J. Infrared. Millim. Terahertz Waves 33, 1117 (2012). CrossRef M.A. Geday, X. Quintana, E. Otón, B. Cerrolaza, D. Lopez, F. Garcia de Quiro, I. Manolis, A. Short, Proc. ICSO, Rhodes, Greece, pp. 1-4 (2010). CrossRef Y. Chen, S.-T. Wu, "The outlook for blue-phase LCDs", Proc. SPIE 9005, Advances in Display Technologies IV, 900508 (2014). CrossRef G.D. Love, A.F. Naumov, "Modal liquid crystal lenses", Liq. Cryst. Today 10, 1 (2000). CrossRef V. Urruchi, J.F. Algorri, J.M. Sánchez-Pena, M.A. Geday, X. Quintana, N. Bennis, "Lenticular Arrays Based on Liquid Crystals", Opto-Electron. Rev. 20, 38 (2012). CrossRef J.F. Algorri, G. Love, and V. Urruchi, "Modal liquid crystal array of optical elements", Opt. Express 21, 24809 (2013). CrossRef J.F. Algorri, V. Urruchi, N. Bennis, J. Sánchez-Pena, "Modal liquid crystal microaxicon array", Opt. Lett. 39, 3476 (2014). CrossRef J.F. Algorri, V. Urruchi, B. Garcia-Camara, J.M. Sánchez-Pena, "Generation of Optical Vortices by an Ideal Liquid Crystal Spiral Phase Plate", IEEE Elect. Dev. Lett. 35, 856 (2014). CrossRef D. Xu, Y. Chen, Y. Liu, S. Wu, "Refraction effect in an in-plane-switching blue phase liquid crystal cell", Opt. Express 21, 24721 (2013). CrossRef Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.T. Wu, "Electro-optics of polymer-stabilized blue phase liquid crystal displays", Appl. Phys. Lett. 94 101104 (2009). CrossRef J. Yan et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef X. Wang, D. Wilson, R. Muller, P. Maker, D. Psaltis, "Liquid-crystal blazed-grating beam deflector, Appl. Opt. 39, 6545 (2000). CrossRef


2012 ◽  
Author(s):  
Hung-Shan Chen ◽  
Chun-Hung Wu ◽  
Michael Chen ◽  
Yi-Hsin Lin

Sign in / Sign up

Export Citation Format

Share Document