blue phases
Recently Published Documents


TOTAL DOCUMENTS

325
(FIVE YEARS 20)

H-INDEX

44
(FIVE YEARS 4)

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2968
Author(s):  
George Cordoyiannis ◽  
Marta Lavrič ◽  
Vasileios Tzitzios ◽  
Maja Trček ◽  
Ioannis Lelidis ◽  
...  

Recent advances in experimental studies of nanoparticle-driven stabilization of chiral liquid-crystalline phases are highlighted. The stabilization is achieved via the nanoparticles’ assembly in the defect lattices of the soft liquid-crystalline hosts. This is of significant importance for understanding the interactions of nanoparticles with topological defects and for envisioned technological applications. We demonstrate that blue phases are stabilized and twist-grain boundary phases are induced by dispersing surface-functionalized CdSSe quantum dots, spherical Au nanoparticles, as well as MoS2 nanoplatelets and reduced-graphene oxide nanosheets in chiral liquid crystals. Phase diagrams are shown based on calorimetric and optical measurements. Our findings related to the role of the nanoparticle core composition, size, shape, and surface coating on the stabilization effect are presented, followed by an overview of and comparison with other related studies in the literature. Moreover, the key points of the underlying mechanisms are summarized and prospects in the field are briefly discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kyle R. Schlafmann ◽  
Timothy J. White

AbstractThe blue phases are observed in highly chiral liquid crystalline compositions that nascently organize into a three-dimensional, crystalline nanostructure. The periodicity of the unit cell lattice spacing is on the order of the wavelength of visible light and accordingly, the blue phases exhibit a selective reflection as a photonic crystal. Here, we detail the synthesis of liquid crystalline elastomers that retain blue phase I, blue phase II, and blue phase III. The mechanical properties and optical reconfiguration via deformation of retained blue phases are contrasted to the cholesteric phase in fully solid elastomers with glass transition temperatures below room temperature. Mechanical deformation and chemical swelling of the lightly crosslinked polymer networks induces lattice asymmetry in the blue phase evident in the tuning of the selective reflection. The lattice periodicity of the blue phase elastomer is minimally affected by temperature. The oblique lattice planes of the blue phase tilt and red-shift in response to mechanical deformation. The retention of the blue phases in fully solid, elastomeric films could enable functional implementations in photonics, sensing, and energy applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Liu ◽  
Wenzhe Liu ◽  
Bo Guan ◽  
Bo Wang ◽  
Lei Shi ◽  
...  

AbstractIn a narrow temperature window in going from the isotropic to highly chiral orders, cholesteric liquid crystals exhibit so-called blue phases, consisting of different morphologies of long, space-filling double twisted cylinders. Those of cubic spatial symmetry have attracted considerable attention in recent years as templates for soft photonic materials. The latter often requires the creation of monodomains of predefined orientation and size, but their engineering is complicated by a lack of comprehensive understanding of how blue phases nucleate and transform into each other at a submicrometer length scale. In this work, we accomplish this by intercepting nucleation processes at intermediate stages with fast cross-linking of a stabilizing polymer matrix. We reveal using transmission electron microscopy, synchrotron small-angle X-ray diffraction, and angle-resolved microspectroscopy that the grid of double-twisted cylinders undergoes highly coordinated, diffusionless transformations. In light of our findings, the implementation of several applications is discussed, such as temperature-switchable QR codes, micro-area lasing, and fabrication of blue phase liquid crystals with large domain sizes.


2021 ◽  
pp. 1-9
Author(s):  
Meng Wang ◽  
Wei Hu ◽  
Zhaozhong Li ◽  
He Song ◽  
Peiyao Jiang ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 772
Author(s):  
Hirotsugu Kikuchi ◽  
Takahiro Ashimine ◽  
Zehui Qin ◽  
Hiroki Higuchi ◽  
Shizuka Anan ◽  
...  

Polymer-stabilised blue phase (PSBP) could be employed in novel fast response optical and photonic devices. It is inferred that inside PSBPs, the polymers are selectively aggregated by location in −1/2 disclinations, which are defects coexisting with the blue phase as a periodic lattice, thereby extending the temperature range of the blue phase. The polymer aggregate structure in PSBPs strongly affects their physical properties. In this study, we employed a non-destructive synchrotron ultra-small-angle X-ray diffraction analysis to investigate the effect of polymerisation rates on the polymer aggregate structure in PSBPs prepared with monomers of different polymerisation rates and examined the structure formation process of the polymer during polymerisation. When methacrylate monomers, which exhibit a relatively low polymerisation rate, were used to form polymers in PSBP, the resulting polymer was more selectively aggregated at disclinations in the PSBP. Furthermore, the electro-optical effect in the PSBP was successfully improved by reducing the polymer concentration in the PSBPs prepared with the optimised monomer combinations.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
SeongYong Cho ◽  
Misaki Takahashi ◽  
Jun-ichi Fukuda ◽  
Hiroyuki Yoshida ◽  
Masanori Ozaki

AbstractControlling the crystallographic orientation of 3D photonic crystals is important as it determines the behavior of light propagating through the device. Blue phases self-assemble into unique soft 3D photonic crystals with chiral structures for circular-polarization selectivity, but it has remained a challenge to control its 3D orientation. Here, we show that the orientation of blue phases can be precisely controlled to follow a predefined pattern imprinted on a substrate by exploiting field-induced phase transitions. Obtaining the blue phase through the field-induced chiral nematic phase and tetragonal blue phase X results in a highly oriented blue phase I with the crystallographic [001] direction aligned along the surface anchoring. Our approach is applied to fabricating a Bragg-Berry hologram with omnidirectional circular-polarization selectivity, where the hologram is visible only for one circular-polarization under all incident angles. Such devices are difficult to fabricate using conventional optical materials, thereby demonstrating the potential of self-organizing soft matter for photonics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Hu ◽  
Ling Wang ◽  
Meng Wang ◽  
Tingjun Zhong ◽  
Qian Wang ◽  
...  

AbstractFabricating functional materials via molecular self-assembly is a promising approach, and precisely controlling the molecular building blocks of nanostructures in the self-assembly process is an essential and challenging task. Blue phase liquid crystals are fascinating self-assembled three-dimensional nanomaterials because of their potential information displays and tuneable photonic applications. However, one of the main obstacles to their applications is their narrow temperature range of a few degrees centigrade, although many prior studies have broadened it to tens via molecular design. In this work, a series of tailored uniaxial rodlike mesogens disfavouring the formation of blue phases are introduced into a blue phase system comprising biaxial dimeric mesogens, a blue phase is observed continuously over a temperature range of 280 °C, and the range remains over 132.0 °C after excluding the frozen glassy state. The findings show that the molecular synergistic self-assembly behavior of biaxial and uniaxial mesogens may play a crucial role in achieving the ultrastable three-dimensional nanostructure of blue phases.


2020 ◽  
Vol 117 (39) ◽  
pp. 24102-24109
Author(s):  
Randall D. Kamien ◽  
Thomas Machon

We describe a theory of packing hyperboloid “diabolic” domains in bend-free textures of liquid crystals. The domains sew together continuously, providing a menagerie of bend-free textures akin to the packing of focal conic domains in smectic liquid crystals. We show how distinct domains may be related to each other by Lorentz transformations and that this process may lower the elastic energy of the system. We discuss a number of phases that may be formed as a result, including splay–twist analogues of blue phases. We also discuss how these diabolic domains may be subject to “superluminal boosts,” yielding defects analogous to shock waves. We explore the geometry of these textures, demonstrating their relation to Milnor fibrations of the Hopf link. Finally, we show how the theory of these domains is unified in four-dimensional space.


2020 ◽  
Vol 8 ◽  
Author(s):  
George Cordoyiannis ◽  
Marta Lavrič ◽  
Maja Trček ◽  
Vasileios Tzitzios ◽  
Ioannis Lelidis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document