scholarly journals Effect of Graphene Nanosheets Content on Microstructure and Mechanical Properties of Titanium Matrix Composite Produced by Cold Pressing and Sintering

Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1024 ◽  
Author(s):  
Milad Haghighi ◽  
Mohammad Shaeri ◽  
Arman Sedghi ◽  
Faramarz Djavanroodi

The effect of graphene nanosheet (GNS) reinforcement on the microstructure and mechanical properties of the titanium matrix composite has been discussed. For this purpose, composites with various GNS contents were prepared by cold pressing and sintering at various time periods. Density calculation by Archimedes’ principle revealed that Ti/GNSs composites with reasonable high density (more than 99.5% of theoretical density) were produced after sintering for 5 h. Microstructural analysis by X-ray diffraction (XRD) and a field emission scanning electron microscope (FESEM) showed that TiC particles were formed in the matrix during the sintering process as a result of a titanium reaction with carbon. Higher GNS content as well as sintering time resulted in an increase in TiC particle size and volume fraction. Microhardness and shear punch tests demonstrated considerable improvement of the specimens’ mechanical properties with the increment of sintering time and GNS content up to 1 wt. %. The microhardness and shear strength of 1 wt. % GNS composites were enhanced from 316 HV and 610 MPa to 613 HV and 754 MPa, respectively, when composites sintered for 5 h. It is worth mentioning that the formation of the agglomerates of unreacted GNSs in 1.5 wt. % GNS composites resulted in a dramatic decrease in mechanical properties.

Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 827 ◽  
Author(s):  
Shuai Zhao ◽  
Yangjian Xu ◽  
Changliang Pan ◽  
Lihua Liang ◽  
Xiaogui Wang

A novel modeling method was proposed to provide an improved representation of the actual microstructure of TiB/Ti-6Al-4V discontinuously-reinforced titanium matrix composite (DRTMC). Based on the Thiessen polygon structure, the representative volume element (RVE) containing the complex microstructures of the DRTMC was first generated. Thereafter, by using multiple user-defined subroutines in the commercial finite element software ABAQUS, the application of asymmetric mesh periodic boundary conditions on the RVE was realized, and the equivalent elastic modulus of the DRTMC was determined according to the homogenization method. Through error analyses on the experimental and calculated results regarding the equivalent elastic parameters of the DRTMC, the rationality of generating the DRTMC finite element model by using the present method was validated. Finally, simulations based on four types of network-like models revealed that the present simplifications to the particle shape of the reinforcement phase had less of an influence on the overall composite strength. Moreover, the present study demonstrates that the DRTMC enhancement is mainly attributed to the matrix strengthening, rather than the load-transferring mechanism. The strengthening influences of the distribution forms of the reinforcement phases, including their distribution density and orientation, were studied further. It was found that both the higher distribution density and limited distribution orientation of the particles would increase the probability of overlapping and merging between particles, and; therefore, higher strength could be yielded when the volume fraction of the reinforcement phase reached a certain threshold. Owing to the versatility of the developed methods and programs, this work can provide a useful reference for the characterization of the mechanical properties of other composites types.


2009 ◽  
Vol 50 (12) ◽  
pp. 2757-2762 ◽  
Author(s):  
Thotsaphon Threrujirapapong ◽  
Katsuyoshi Kondoh ◽  
Hisashi Imai ◽  
Junko Umeda ◽  
Bunshi Fugetsu

Sign in / Sign up

Export Citation Format

Share Document