scholarly journals Revealing the Role of Sidewall Orientation in Wet Chemical Etching of GaN-Based Ultraviolet Light-Emitting Diodes

Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 365 ◽  
Author(s):  
Hui Wan ◽  
Bin Tang ◽  
Ning Li ◽  
Shengjun Zhou ◽  
Chengqun Gui ◽  
...  

We demonstrated that the tetramethylammonium hydroxide (TMAH) solution possesses different etching abilities to the chip sidewalls with different orientations because the orientation of chip sidewall determines the exposed crystallographic plane of gallium nitride (GaN) and these crystallographic planes are with different chemical stability to the TMAH solution. After TMAH etching treatment, trigonal prisms were observed on sidewalls where m-plane GaN was exposed. For the investigated two types of light-emitting diodes (LEDs) with orthogonal arrangements, the LEDs with their larger sidewalls orientated along the [11–20] direction exhibited an additional 10% improvement in light output power after TMAH etching treatment compared to the LEDs with larger sidewalls orientated along the [1–100] direction.

2009 ◽  
Vol 30 (11) ◽  
pp. 1152-1154 ◽  
Author(s):  
Hung-Wen Huang ◽  
Chung-Hsiang Lin ◽  
Zhi-Kai Huang ◽  
Kang-Yuan Lee ◽  
Chang-Chin Yu ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 835 ◽  
Author(s):  
Caiman Yan ◽  
Qiliang Zhao ◽  
Jiasheng Li ◽  
Xinrui Ding ◽  
Yong Tang ◽  
...  

Ultraviolet light-emitting diodes (UVLED) are a new type of device in the LED development; however, the radiant efficacy of UVLEDs is still too low to satisfy the requirements of applications. In this study, boron nitride nanoparticles (BN NPs) are incorporated into the UVLED’s silicone encapsulation to improve the optical output power. This BN NPs-based package shows an increase in optical flux of 8.1% compared with silicone-only encapsulation when the BN NP concentration is optimized at 0.025 wt%. By analyzing the BN NP film, adding the BN NPs into silicone leads to a decrease in transmittance but an increase in haze. Haze and transmittance has an excellent negative correlation with increasing BN concentration under 365 nm. The moderate BN NP concentration maximizes the scattering performance from haze while maintaining high transmittance. Therefore, this enhanced light output is attributed to scattering that reduces optical losses from total internal reflection at the silicone–air interface. By using the new BN-based structure in green and red quantum dot devices, an increase radiant flux of the device is observed, 9.9% for green LED and 11.4% for red LED. This indicates that BN NPs have potential prospects in the application of UV LEDs used as excitation sources for quantum dots.


Sign in / Sign up

Export Citation Format

Share Document