scholarly journals Synthesis and Electrochemical Energy Storage Applications of Micro/Nanostructured Spherical Materials

Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1207 ◽  
Author(s):  
Gong ◽  
Gao ◽  
Hu ◽  
Zhou

Micro/nanostructured spherical materials have been widely explored for electrochemical energy storage due to their exceptional properties, which have also been summarized based on electrode type and material composition. The increased complexity of spherical structures has increased the feasibility of modulating their properties, thereby improving their performance compared with simple spherical structures. This paper comprehensively reviews the synthesis and electrochemical energy storage applications of micro/nanostructured spherical materials. After a brief classification, the concepts and syntheses of micro/nanostructured spherical materials are described in detail, which include hollow, core-shelled, yolk-shelled, double-shelled, and multi-shelled spheres. We then introduce strategies classified into hard-, soft-, and self-templating methods for synthesis of these spherical structures, and also include the concepts of synthetic methodologies. Thereafter, we discuss their applications as electrode materials for lithium-ion batteries and supercapacitors, and sulfur hosts for lithium–sulfur batteries. The superiority of multi-shelled hollow micro/nanospheres for electrochemical energy storage applications is particularly summarized. Subsequently, we conclude this review by presenting the challenges, development, highlights, and future directions of the micro/nanostructured spherical materials for electrochemical energy storage.


2019 ◽  
Vol 7 (9) ◽  
pp. 4334-4352 ◽  
Author(s):  
Yan-Song Xu ◽  
Shu-Yi Duan ◽  
Yong-Gang Sun ◽  
De-Shan Bin ◽  
Xian-Sen Tao ◽  
...  

Due to their abundant resources and potential price advantage, potassium-ion batteries (KIBs) have recently drawn increasing attention as a promising alternative to lithium-ion batteries (LIBs) for their applications in electrochemical energy storage applications.



2018 ◽  
Vol 47 (8) ◽  
pp. 2837-2872 ◽  
Author(s):  
Wenshuai Chen ◽  
Haipeng Yu ◽  
Sang-Young Lee ◽  
Tong Wei ◽  
Jian Li ◽  
...  

Nanocellulose from various kinds of sources and nanocellulose-derived materials have been developed for electrochemical energy storage, including supercapacitors, lithium-ion batteries, lithium–sulfur batteries, and sodium-ion batteries.



Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2597
Author(s):  
Jongyoon Park ◽  
Jiyun Lee ◽  
Seongseop Kim ◽  
Jongkook Hwang

Graphene (G)-based two dimensional (2D) mesoporous materials combine the advantages of G, ultrathin 2D morphology, and mesoporous structures, greatly contributing to the improvement of power and energy densities of energy storage devices. Despite considerable research progress made in the past decade, a complete overview of G-based 2D mesoporous materials has not yet been provided. In this review, we summarize the synthesis strategies for G-based 2D mesoporous materials and their applications in supercapacitors (SCs) and lithium-ion batteries (LIBs). The general aspect of synthesis procedures and underlying mechanisms are discussed in detail. The structural and compositional advantages of G-based 2D mesoporous materials as electrodes for SCs and LIBs are highlighted. We provide our perspective on the opportunities and challenges for development of G-based 2D mesoporous materials. Therefore, we believe that this review will offer fruitful guidance for fabricating G-based 2D mesoporous materials as well as the other types of 2D heterostructures for electrochemical energy storage applications.



RSC Advances ◽  
2014 ◽  
Vol 4 (87) ◽  
pp. 46976-46979 ◽  
Author(s):  
M. Fatnassi ◽  
C.-H. Solterbeck ◽  
M. Es-Souni

Smectite clays can be advantageously used as electrode materials for supercapacitor applications affording cost-effectiveness together with environmental friendliness.



2016 ◽  
Vol 1 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Hao Bin Wu ◽  
Genqiang Zhang ◽  
Le Yu ◽  
Xiong Wen (David) Lou

One-dimensional (1D) metal oxide–carbon hybrid nanostructures have recently attracted enormous interest as promising electrode materials for electrochemical energy storage devices, including lithium-ion batteries and electrochemical capacitors.



2016 ◽  
Vol 1 (4) ◽  
pp. 272-289 ◽  
Author(s):  
Faxing Wang ◽  
Xiaowei Wang ◽  
Zheng Chang ◽  
Yusong Zhu ◽  
Lijun Fu ◽  
...  

This review highlights electrode materials with predominantly exposed facets facilitating better electrochemical performances in electrochemical energy storage applications.



Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1064 ◽  
Author(s):  
Elisa Thauer ◽  
Alexander Ottmann ◽  
Philip Schneider ◽  
Lucas Möller ◽  
Lukas Deeg ◽  
...  

Downsizing well-established materials to the nanoscale is a key route to novel functionalities, in particular if different functionalities are merged in hybrid nanomaterials. Hybrid carbon-based hierarchical nanostructures are particularly promising for electrochemical energy storage since they combine benefits of nanosize effects, enhanced electrical conductivity and integrity of bulk materials. We show that endohedral multiwalled carbon nanotubes (CNT) encapsulating high-capacity (here: conversion and alloying) electrode materials have a high potential for use in anode materials for lithium-ion batteries (LIB). There are two essential characteristics of filled CNT relevant for application in electrochemical energy storage: (1) rigid hollow cavities of the CNT provide upper limits for nanoparticles in their inner cavities which are both separated from the fillings of other CNT and protected against degradation. In particular, the CNT shells resist strong volume changes of encapsulates in response to electrochemical cycling, which in conventional conversion and alloying materials hinders application in energy storage devices. (2) Carbon mantles ensure electrical contact to the active material as they are unaffected by potential cracks of the encapsulate and form a stable conductive network in the electrode compound. Our studies confirm that encapsulates are electrochemically active and can achieve full theoretical reversible capacity. The results imply that encapsulating nanostructures inside CNT can provide a route to new high-performance nanocomposite anode materials for LIB.



Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4000
Author(s):  
Eunhwan Kim ◽  
Juyeon Han ◽  
Seokgyu Ryu ◽  
Youngkyu Choi ◽  
Jeeyoung Yoo

For decades, improvements in electrolytes and electrodes have driven the development of electrochemical energy storage devices. Generally, electrodes and electrolytes should not be developed separately due to the importance of the interaction at their interface. The energy storage ability and safety of energy storage devices are in fact determined by the arrangement of ions and electrons between the electrode and the electrolyte. In this paper, the physicochemical and electrochemical properties of lithium-ion batteries and supercapacitors using ionic liquids (ILs) as an electrolyte are reviewed. Additionally, the energy storage device ILs developed over the last decade are introduced.





Sign in / Sign up

Export Citation Format

Share Document