scholarly journals Fabrication of Robust Hydrogen Evolution Reaction Electrocatalyst Using Ag2Se by Vacuum Evaporation

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1460
Author(s):  
Sajjad Hussain ◽  
Jinwoong Chae ◽  
Kamran Akbar ◽  
Dhanasekaran Vikraman ◽  
Linh Truong ◽  
...  

Much research has been done on reliable and low-cost electrocatalysts for hydrogen generation by water splitting. In this study, we synthesized thin films of silver selenide (Ag2Se) using a simple thermal evaporation route and demonstrated their electrocatalytic hydrogen evolution reaction (HER) activity. The Ag2Se catalysts show improved electrochemical surface area and good HER electrocatalytic behavior (367 mV overpotential @ 10 mA·cm−2, exchange current density: ~1.02 × 10−3 mA·cm−2, and Tafel slope: 53 mV·dec−1) in an acidic medium). The reliability was checked in 0.5 M sulfuric acid over 20 h. Our first-principles calculations show the optimal energy of hydrogen adsorption, which is consistent with experimental results. The works could be further extended for finding a new catalyst by associating the selenide, sulfide or telluride-based materials without complex catalyst synthesis procedures.

2020 ◽  
Vol 8 (3) ◽  
pp. 1307-1314 ◽  
Author(s):  
Abdul Jalil ◽  
Zhiwen Zhuo ◽  
Zhongti Sun ◽  
Fang Wu ◽  
Chuan Wang ◽  
...  

Phosphorene-like InP3 is reported with first-principles calculations, which is a direct-bandgap semiconductor with anisotropic carrier mobility and high catalytic activity toward the hydrogen evolution reaction.


Author(s):  
Ta-Wei Wang ◽  
Tan-Ling Wang ◽  
Wan-Jou Chou ◽  
Li-Fan Wu ◽  
Shi-Hsin Lin

We comprehensively investigated the hydrogen evolution reaction (HER) activity of a series of transition metal phosphides MP (M = Cr, Mn, Fe, Co, and Ni) using first-principles calculations. The free...


2020 ◽  
Vol 8 (37) ◽  
pp. 19522-19532
Author(s):  
Yiqing Chen ◽  
Pengfei Ou ◽  
Xiaohan Bie ◽  
Jun Song

The 2H/1T′ phase boundary activated hydrogen evolution reaction on two-dimensional transition metal dichalcogenides is well studied by comprehensive first-principles calculations.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Sangyeon Pak ◽  
Jungmoon Lim ◽  
John Hong ◽  
SeungNam Cha

Monolayered, semiconducting MoS2 and their transition metal dichalcogenides (TMDCs) families are promising and low-cost materials for hydrogen generation through electrolytes (HER, hydrogen evolution reaction) due to their high activities and electrochemical stability during the reaction. However, there is still a lack of understanding in identifying the underlying mechanism responsible for improving the electrocatalytic properties of theses monolayers. In this work, we investigated the significance of controlling carrier densities in a MoS2 monolayer and in turn the corresponding electrocatalytic behaviors in relation to the energy band structure of MoS2. Surface functionalization was employed to achieve p-doping and n-doping in the MoS2 monolayer that led to MoS2 electrochemical devices with different catalytic performances. Specifically, the electron-rich MoS2 surface showed lower overpotential and Tafel slope compared to the MoS2 with surface functional groups that contributed to p-doping. We attributed such enhancement to the increase in the carrier density and the corresponding Fermi level that accelerated HER and charge transfer kinetics. These findings are of high importance in designing electrocatalysts based on two-dimensional TMDCs.


2021 ◽  
Author(s):  
Jing Yang ◽  
Zhi Gen Yu ◽  
Yong-Wei Zhang

Moving forward from single atom catalysts, here we propose Cu mers coordinated with N atoms in graphene as a potential catalyst for hydrogen evolution reaction (HER) using first-principles calculations. Our...


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 161
Author(s):  
Fangtao Li ◽  
Xiaoxu Wang ◽  
Rongming Wang

As a typical two-dimensional (2D) MXene, Ti3C2O2 has been considered as a potential material for high-performance hydrogen evolution reaction (HER) catalyst, due to its anticorrosion and hydrophilic surface. However, it is still a challenge to improve the Ti3C2O2 surficial HER catalytic activity. In this work, we investigated the HER activity of Ti3C2O2 after the surface was doped with S, Se, and Te by the first principles method. The results indicated that the HER activity of Ti3C2O2 is improved after being doped with S, Se, Te because the Gibbs free energy of hydrogen adsorption (ΔGH) is increased from −2.19 eV to 0.08 eV. Furthermore, we also found that the ΔGH of Ti3C2O2 increased from 0.182 eV to 0.08 eV with the doping concentration varied from 5.5% to 16.7%. The HER catalytic activity improvement of Ti3C2O2 is attributed to the local crystal structure distortion in catalytic active sites and Fermi level shift leads to the p-d orbital hybridization. Our results pave a new avenue for preparing a low-cost and high performance HER catalyst.


Author(s):  
Haijun Liu ◽  
Wen-Li Yu ◽  
Meng-Xuan Li ◽  
Shu-Yue Dou ◽  
Fu-Li Wang ◽  
...  

Transition-metal sulfides (MxSy) have attracted keen interest as promising catalysts for hydrogen evolution reaction (HER) due to their low cost. However, the formation of sulfur-hydrogen bonds on MxSy (S-Hads) will...


2018 ◽  
Vol 6 (28) ◽  
pp. 13859-13866 ◽  
Author(s):  
Jian Yang ◽  
Heng Guo ◽  
Shulin Chen ◽  
Yulan Li ◽  
Chao Cai ◽  
...  

Developing highly efficient, durable, and low-cost catalysts for the hydrogen evolution reaction (HER) is an eternal pursuit for scientists to replace Pt-based catalysts.


Nanoscale ◽  
2021 ◽  
Author(s):  
Mingjie Pu ◽  
Yufeng Guo ◽  
Wanlin Guo

Utilizing transition metal dichalcogenides (TMDs) as catalysts in hydrogen evolution reaction (HER) exhibits a promising prospect for hydrogen production. Here by first-principles calculations we reveal that the catalytic activities of...


Sign in / Sign up

Export Citation Format

Share Document