scholarly journals Surface Modifications of 2D-Ti3C2O2 by Nonmetal Doping for Obtaining High Hydrogen Evolution Reaction Activity: A Computational Approach

Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 161
Author(s):  
Fangtao Li ◽  
Xiaoxu Wang ◽  
Rongming Wang

As a typical two-dimensional (2D) MXene, Ti3C2O2 has been considered as a potential material for high-performance hydrogen evolution reaction (HER) catalyst, due to its anticorrosion and hydrophilic surface. However, it is still a challenge to improve the Ti3C2O2 surficial HER catalytic activity. In this work, we investigated the HER activity of Ti3C2O2 after the surface was doped with S, Se, and Te by the first principles method. The results indicated that the HER activity of Ti3C2O2 is improved after being doped with S, Se, Te because the Gibbs free energy of hydrogen adsorption (ΔGH) is increased from −2.19 eV to 0.08 eV. Furthermore, we also found that the ΔGH of Ti3C2O2 increased from 0.182 eV to 0.08 eV with the doping concentration varied from 5.5% to 16.7%. The HER catalytic activity improvement of Ti3C2O2 is attributed to the local crystal structure distortion in catalytic active sites and Fermi level shift leads to the p-d orbital hybridization. Our results pave a new avenue for preparing a low-cost and high performance HER catalyst.

2015 ◽  
Vol 3 (24) ◽  
pp. 13066-13071 ◽  
Author(s):  
Jiayuan Li ◽  
Xuemei Zhou ◽  
Zhaoming Xia ◽  
Zhiyun Zhang ◽  
Jing Li ◽  
...  

HER catalytic activity of CoX (X = S, P) nanocatalysts prepared through a facile and controllable synthesis by the chemical conversion of thin Co(OH)2 nanoplates was studied. The better HER performance of CoP could be derived from its intrinsically positive charged nature of the metal center Co, the long bond length of Co–P and the abundant catalytic active sites toward HER.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Qian Zhang ◽  
Shuihua Tang ◽  
Lieha Shen ◽  
Weixiang Yang ◽  
Zhen Tang ◽  
...  

Developing cost-effective and high-performance electrocatalysts for hydrogen evolution reaction (HER) are imperative thanks to rapid increase of fuel-cell driven vehicles. Tungsten (W) possesses advantages of optimized hydrogen adsorption energy and...


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1460
Author(s):  
Sajjad Hussain ◽  
Jinwoong Chae ◽  
Kamran Akbar ◽  
Dhanasekaran Vikraman ◽  
Linh Truong ◽  
...  

Much research has been done on reliable and low-cost electrocatalysts for hydrogen generation by water splitting. In this study, we synthesized thin films of silver selenide (Ag2Se) using a simple thermal evaporation route and demonstrated their electrocatalytic hydrogen evolution reaction (HER) activity. The Ag2Se catalysts show improved electrochemical surface area and good HER electrocatalytic behavior (367 mV overpotential @ 10 mA·cm−2, exchange current density: ~1.02 × 10−3 mA·cm−2, and Tafel slope: 53 mV·dec−1) in an acidic medium). The reliability was checked in 0.5 M sulfuric acid over 20 h. Our first-principles calculations show the optimal energy of hydrogen adsorption, which is consistent with experimental results. The works could be further extended for finding a new catalyst by associating the selenide, sulfide or telluride-based materials without complex catalyst synthesis procedures.


2020 ◽  
Vol 22 (45) ◽  
pp. 26189-26199
Author(s):  
Huan Lou ◽  
Tong Yu ◽  
Jiani Ma ◽  
Shoutao Zhang ◽  
Aitor Bergara ◽  
...  

Two-dimensional Mo2C materials (1T and 2H phases) have emerged as promising electrocatalysts for the hydrogen evolution reaction (HER) due to their low cost, inherent metallicity, and high stability.


Nanoscale ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 1766-1773 ◽  
Author(s):  
Xingyue Qian ◽  
Junfei Ding ◽  
Jianli Zhang ◽  
Yue Zhang ◽  
Yining Wang ◽  
...  

The molybdenum disulfide/carbon nitride (MoS2/C3N4-3) nanosheets with ultrathin thickness present superior catalytic activity for hydrogen evolution reaction for water splitting.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jinbo Hao ◽  
Feng Wei ◽  
Xinhui Zhang ◽  
Long Li ◽  
Chunling Zhang ◽  
...  

AbstractWater electrolysis is a sustainable and clean method to produce hydrogen fuel via hydrogen evolution reaction (HER). Using stable, effective and low-cost electrocatalysts for HER to substitute expensive noble metals is highly desired. In this paper, by using first-principles calculation, we designed a defect and N-, S-, P-doped penta-graphene (PG) as a two-dimensional (2D) electrocatalyst for HER, and its stability, electronic properties and catalytic performance were investigated. The Gibbs free energy (ΔGH), which is the best descriptor for the HER, is calculated and optimized, the calculation results show that the ΔGH can be 0 eV with C2 vacancies and P doping at C1 active sites, which should be the optimal performance for a HER catalyst. Moreover, we reveal that the larger charge transfer from PG to H, the closer ΔGH is to zero according to the calculation of the electron charge density differences and Bader charges analysis. Ulteriorly, we demonstrated that the HER performance prefers the Volmer–Heyrovsky mechanism in this study.


Nanoscale ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 1985-1993 ◽  
Author(s):  
Yuyang Qi ◽  
Long Zhang ◽  
Lan Sun ◽  
Guanjun Chen ◽  
Qiaomei Luo ◽  
...  

Electrocatalysts with high catalytic activity, high stability and low cost are critical to the hydrogen evolution reaction (HER).


2020 ◽  
Author(s):  
Yiqing Chen ◽  
Pengfei Ou ◽  
Xiaohan Bie ◽  
Jun Song

<p>Two-dimensional transition metal dichalcogenides (2D TMDCs) have attracted tremendous interest as one prominent material group promising inexpensive <a>electrocatalysts for hydrogen evolution reaction (HER)</a>. In the present study, using <a>monolayer MoTe<sub>2</sub> as a representative, we demonstrated that </a>phase boundaries can provide a viable pathway to activate the basal plane of 2D TMDCs for enhanced HER performance. Comprehensive first-principles calculations have been performed to examine the energetics and structural stabilities of possible 2H/1T’ phase boundary configurations. Three categories of sites, Te, Mo and hollow sites, have been identified in energetically stable phase boundaries, as potential catalytic centers for HER, all indicating enhanced HER activity than the pristine basal lattice. In particular, the hollow sites, a new group of sites induced by phase boundaries, show great promise by exhibiting a Gibbs free energy near the thermoneutral value for hydrogen adsorption, comparable to that of Pt. The mechanisms underlying hydrogen adsorption at phase boundaries were then revealed, shown to be attributed to the unique local hydrogen adsorption geometries and electronic structures at phase boundaries. Our study clarifies the important mechanistic aspects underlying hydrogen activation at phase boundaries, providing valuable theoretical insights towards designing new class of high-performance HER electrocatalysts based on 2D TMDCs.</p>


Author(s):  
Yonggang Liu ◽  
Haijing Li ◽  
Junfu Li ◽  
Xiaoshuang Ma ◽  
Zhiming Cui ◽  
...  

Two-dimensional (2D) rhenium disulfide (ReS2) has been attracting immense interests as highly promising hydrogen evolution reaction (HER) electrocatalyst recently. However, the HER catalytic active sites of ReS2 are still limited...


Sign in / Sign up

Export Citation Format

Share Document