scholarly journals Improved Glycemic Control and Variability: Application of Healthy Ingredients in Asian Staples

Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3102
Author(s):  
Stefan Gerardus Camps ◽  
Bhupinder Kaur ◽  
Joseph Lim ◽  
Yi Ting Loo ◽  
Eunice Pang ◽  
...  

A reduction in carbohydrate intake and low-carbohydrate diets are often advocated to prevent and manage diabetes. However, limiting or eliminating carbohydrates may not be a long-term sustainable and maintainable approach for everyone. Alternatively, diet strategies to modulate glycemia can focus on the glycemic index (GI) of foods and glycemic load (GL) of meals. To assess the effect of a reduction in glycemic load of a 24 h diet by incorporating innovative functional ingredients (β-glucan, isomaltulose) and alternative low GI Asian staples (noodles, rice)on glycemic control and variability, twelve Chinese men (Age: 27.0 ± 5.1 years; BMI:21.6 ± 1.8kg/m2) followed two isocaloric, typically Asian, 24h diets with either a reduced glycemic load (LGL) or high glycemic load (HGL) in a randomized, single-blind, controlled, cross-over design. Test meals included breakfast, lunch, snack and dinner and the daily GL was reduced by 37% in the LGL diet. Continuous glucose monitoring provided 24 h glycemic excursion and variability parameters: incremental area under the curve (iAUC), max glucose concentration (Max), max glucose range, glucose standard deviation (SD), and mean amplitude of glycemic excursion (MAGE), time in range (TIR). Over 24h, the LGL diet resulted in a decrease in glucose Max (8.12 vs. 6.90 mmol/L; p = 0.0024), glucose range (3.78 vs. 2.21 mmol/L; p = 0.0005), glucose SD (0.78 vs. 0.43 mmol/L; p = 0.0002), mean amplitude of glycemic excursion (2.109 vs. 1.008; p < 0.0001), and increase in 4.5–6.5mmol/L TIR (82.2 vs. 94.6%; p = 0.009), compared to the HGL diet. The glucose iAUC, MAX, range and SD improved during the 2 h post-prandial window of each LGL meal, and this effect was more pronounced later in the day. The current results validate the dietary strategy of incorporating innovative functional ingredients (β-glucan, isomaltulose) and replacing Asian staples with alternative low GI carbohydrate sources to reduce daily glycemic load to improve glycemic control and variability as a viable alternative to the reduction in carbohydrate intake alone. These observations provide substantial public health support to encourage the consumption of staples of low GI/GL to reduce glucose levels and glycemic variability. Furthermore, there is growing evidence that the role of chrononutrition, as reported in this paper, requires further examination and should be considered as an important addition to the understanding of glucose homeostasis variation throughout the day.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jen-Hung Huang ◽  
Yung-Kuo Lin ◽  
Ting-Wei Lee ◽  
Han-Wen Liu ◽  
Yu-Mei Chien ◽  
...  

Abstract Background Glucose monitoring is vital for glycemic control in patients with diabetes mellitus (DM). Continuous glucose monitoring (CGM) measures whole-day glucose levels. Hemoglobin A1c (HbA1c) is a vital outcome predictor in patients with DM. Methods This study investigated the relationship between HbA1c and CGM, which remained unclear hitherto. Data of patients with DM (n = 91) who received CGM and HbA1c testing (1–3 months before and after CGM) were retrospectively analyzed. Diurnal and nocturnal glucose, highest CGM data (10%, 25%, and 50%), mean amplitude of glycemic excursions (MAGE), percent coefficient of variation (%CV), and continuous overlapping net glycemic action were compared with HbA1c values before and after CGM. Results The CGM results were significantly correlated with HbA1c values measured 1 (r = 0.69) and 2 (r = 0.39) months after CGM and 1 month (r = 0.35) before CGM. However, glucose levels recorded in CGM did not correlate with the HbA1c values 3 months after and 2–3 months before CGM. MAGE and %CV were strongly correlated with HbA1c values 1 and 2 months after CGM, respectively. Diurnal blood glucose levels were significantly correlated with HbA1c values 1–2 months before and 1 month after CGM. The nocturnal blood glucose levels were significantly correlated with HbA1c values 1–3 months before and 1–2 months after CGM. Conclusions CGM can predict HbA1c values within 1 month after CGM in patients with DM.


2020 ◽  
pp. 193229682096559
Author(s):  
Sheyda Sofizadeh ◽  
Anders Pehrsson ◽  
Arndís F. Ólafsdóttir ◽  
Marcus Lind

Background: Recent guidelines have been developed for continuous glucose monitoring (CGM) metrics in persons with diabetes. To understand what glucose profiles should be judged as normal in clinical practice and glucose-lowering trials, we examined the glucose profile of healthy individuals using CGM. Methods: Persons without diabetes or prediabetes were included after passing a normal oral glucose tolerance test, two-hour value <8.9 mmol/L (160 mg/dL), fasting glucose <6.1 mmol/L (110 mg/dL), and HbA1c <6.0% (<42 mmol/mol). CGM metrics were evaluated using the Dexcom G4 Platinum. Results: In total, 60 persons were included, mean age was 43.0 years, 70.0% were women, mean HbA1c was 5.3% (34 mmol/mol), and mean body mass index was 25.7 kg/m2. Median and mean percent times in hypoglycemia <3.9 mmol/L (70 mg/dL) were 1.6% (IQR 0.6-3.2), and 3.2% (95% CI 2.0; 4.3), respectively. For glucose levels <3.0 mmol/L (54 mg/dL), the corresponding estimates were 0.0% (IQR 0.0-0.4) and 0.5% (95% CI 0.2; 0.8). Median and mean time-in-range (3.9-10.0 mmol/L [70-180 mg/dL]) was 97.3% (IQR 95.4-98.7) and 95.4% (95% CI 94.0; 96.8), respectively. Median and mean standard deviations were 1.04 mmol/L (IQR 0.92-1.29) and 1.15 mmol/L (95% CI 1.05; 1.24), respectively. Measures of glycemic variability (standard deviation, coefficient of variation, mean amplitude of glycemic excursions) were significantly greater during daytime compared with nighttime, whereas others did not differ. Conclusions: People without prediabetes or diabetes show a non-negligible % time in hypoglycemia, median 1.6% and mean 3.2%, which needs to be accounted for in clinical practice and glucose-lowering trials. Glycemic variability measures differ day and night in this population.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anne-Esther Breyton ◽  
Stéphanie Lambert-Porcheron ◽  
Martine Laville ◽  
Sophie Vinoy ◽  
Julie-Anne Nazare

Glycemic variability (GV) appears today as an integral component of glucose homeostasis for the management of type 2 diabetes (T2D). This review aims at investigating the use and relevance of GV parameters in interventional and observational studies for glucose control management in T2D. It will first focus on the relationships between GV parameters measured by continuous glucose monitoring system (CGMS) and glycemic control and T2D-associated complications markers. The second part will be dedicated to the analysis of GV parameters from CGMS as outcomes in interventional studies (pharmacological, nutritional, physical activity) aimed at improving glycemic control in patients with T2D. From 243 articles first identified, 63 articles were included (27 for the first part and 38 for the second part). For both analyses, the majority of the identified studies were pharmacological. Lifestyle studies (including nutritional and physical activity-based studies, N-AP) were poorly represented. Concerning the relationships of GV parameters with those for glycemic control and T2D related-complications, the standard deviation (SD), the coefficient of variation (CV), the mean blood glucose (MBG), and the mean amplitude of the glycemic excursions (MAGEs) were the most studied, showing strong relationships, in particular with HbA1c. Regarding the use and relevance of GV as an outcome in interventional studies, in pharmacological ones, SD, MAGE, MBG, and time in range (TIR) were the GV parameters used as main criteria in most studies, showing significant improvement after intervention, in parallel or not with glycemic control parameters’ (HbA1c, FBG, and PPBG) improvement. In N-AP studies, the same results were observed for SD, MAGE, and TIR. Despite the small number of N-AP studies addressing both GV and glycemic control parameters compared to pharmacological ones, N-AP studies have shown promising results on GV parameters and would require more in-depth work. Evaluating CGMS-GV parameters as outcomes in interventional studies may provide a more integrative dimension of glucose control than the standard postprandial follow-up. GV appears to be a key component of T2D dysglycemia, and some parameters such as MAGE, SD, or TIR could be used routinely in addition to classical markers of glycemic control such as HbA1c, fasting, or postprandial glycemia.


2021 ◽  
Vol 24 (3) ◽  
pp. 282-290
Author(s):  
L. A. Suplotova ◽  
A. S. Sudnitsyna ◽  
N. V. Romanova ◽  
M. V. Shestakova

The presence of continuous glucose monitoring (CGM) systems has expanded diagnostic capabilities. The implementation of this technology into clinical practice allowed to determine the patterns and tendencies of excursions in glucose levels, to obtain reliable data concerning short-term glycemic control. Taking into consideration the large amount of obtained information using CGM systems, more than 30 different indicators characterizing glycemic variability were proposed. However, it is very difficult for a practitioner to interpret the data obtained due to the variety of indicators and the lack of their target values. The first step in the standardization of indices was the creation of the International Guidelines for CGM in 2017, where the Time in Range (TIR) (3,9–10,0 mmol/l, less often 3,9–7,8 mmol/l) was significant. To complement the agreed parameters and simplify the interpretation of obtained data using CGM, in 2019 the recommendations were prepared for the International Consensus on Time in Range, where TIR was validated as an additional component of the assessment of glycemic control along with HbA1c. In the literature review the issues of the association of TIR with the development of micro- and macrovascular complications in type 1 and 2 diabetes are considered. The relationship with other indicators of the glycemic control assessment was also analyzed and the dependence of insulin therapy on TIR was shown. TIR is a simple and convenient indicator, it has a proven link with micro- and macrovascular complications of diabetes and can be recommended as a new tool for assessing the glycemic control. The main disadvantage of TIR usage is the insufficient apply of CGM technology by the majority of patients with diabetes.


2021 ◽  
Author(s):  
Jen-Hung Huang ◽  
Yung-Kuo Lin ◽  
Ting-Wei Lee ◽  
Han-Wen Liu ◽  
Yu-Mei Chien ◽  
...  

Abstract Background: Glucose monitoring is vital for glycemic control in patients with diabetes mellitus (DM). Continuous glucose monitoring (CGM) measures whole-day glucose levels. Hemoglobin A1c (HbA1c) is a vital outcome predictor in patients with DM. Methods: This study investigated the relationship between HbA1c and CGM, which remained unclear hitherto. Data of patients with DM (n = 91) who received CGM and HbA1c testing (1-3 months before and after CGM) were retrospectively analyzed. Diurnal and nocturnal glucose, highest CGM data (10%, 25%, and 50%), mean amplitude of glycemic excursions (MAGE), percent coefficient of variation (%CV), and continuous overlapping net glycemic action were compared with HbA1c values before and after CGM. Results: The CGM results were significantly correlated with HbA1c values measured 1 (r = 0.69) and 2 (r = 0.39) months after CGM and 1 month (r = 0.35) before CGM. However, glucose levels recorded in CGM did not correlate with the HbA1c values 3 months after and 2-3 months before CGM. MAGE and %CV were strongly correlated with HbA1c values 1 and 2 months after CGM, respectively. Diurnal blood glucose levels were significantly correlated with HbA1c values 1-2 months before and 1 month after CGM. The nocturnal blood glucose levels were significantly correlated with HbA1c values 1-3 months before and 1-2 months after CGM.Conclusions: CGM can predict HbA1c values within 1 month after CGM in patients with DM.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huiying Wang ◽  
Yunting Zhou ◽  
Xiaofang Zhai ◽  
Bo Ding ◽  
Ting Jing ◽  
...  

AimThis study aims at evaluating glycemic control during Basalin or Lantus administration in adults with controlled type 2 diabetes mellitus using continuous glucose monitoring system (CGM).Methods47 patients with well-controlled T2DM using both Basalin and oral hypoglycemic drugs were recruited. CGM were applied from day 1 to day 3 with the unchanged dose of Basalin and then removed from day 4. A washout was performed with Lantus at the same dose as Basalin from day 4 to day 10. Then patients were continued to install the CGM under Lantus administration from day 11 to day 13. Variables of CGM, such as the area under the curve (AUC) for both hyperglycemia and hypoglycemia, 24h mean blood glucose (24h MBG), 24h standard deviation of blood glucose (24h SDBG), 24h mean amplitude of glycemic excursion (24h MAGE), PT (percentage of time), and time in range (TIR), were calculated and compared between Basalin group and Lantus group.ResultsThe group of Lantus showed lower 24h MBG (p&lt;0.01), 24h MAGE (p&lt;0.05), and lower 24h SDBG (p&lt;0.01) than the Basalin group. Lantus−treated patients had a lower PT and AUC when the cut-off point for blood glucose was 10 mmol/L (p&lt;0.05) and 13.9 mmol/L (p&lt;0.05), respectively. In this study, no patient developed symptomatic hypoglycemia, few hypoglycemia was observed and there was no difference of hypoglycemia between the two groups.ConclusionIn patients with well-controlled T2DM who were treated with insulin glargine, Lantus group showed lower MBG, GV, and lower PT (BG &gt; 10.0 mmol/L, BG &gt; 13.9 mmol/L) than Basalin group. In summary, for T2DM population with HbA1c ≤ 7%, Lantus may be a better choice compared with Basalin.


2020 ◽  
Author(s):  
Sergio Contador Pachón ◽  
Marta Botella Serrano ◽  
Aranzazu Aramendi Zurimendi ◽  
Remedios Rodríguez Martínez ◽  
Esther Maqueda Villaizán ◽  
...  

Objective: Assess in a sample of patients with type 1 diabetes mellitus whether mood and stress influence blood glucose levels and variability. Material and Methods: Continuous glucose monitoring was performed on 10 patients with type 1 diabetes, where interstitial glucose values were recorded every 15 minutes. A daily survey was conducted through Google Forms, collecting information on mood and stress. The day was divided into 6 slots of 4-hour each, asking the patient to assess each slot in relation to mood (sad, normal or happy) and stress (calm, normal or nervous). Different measures of glycemic control (arithmetic mean and percentage of time below/above the target range) and variability (standard deviation, percentage coefficient of variation, mean amplitude of glycemic excursions and mean of daily differences) were calculated to relate the mood and stress perceived by patients with blood glucose levels and glycemic variability. A hypothesis test was carried out to quantitatively compare the data groups of the different measures using the Student's t-test. Results: Statistically significant differences (p-value < 0.05) were found between different levels of stress. In general, average glucose and variability decrease when the patient is calm. There are statistically significant differences (p-value < 0.05) between different levels of mood. Variability increases when the mood changes from sad to happy. However, the patient's average glucose decreases as the mood improves. Conclusions: Variations in mood and stress significantly influence blood glucose levels, and glycemic variability in the patients analyzed with type 1 diabetes mellitus. Therefore, they are factors to consider for improving glycemic control. The mean of daily differences does not seem to be a good indicator for variability. Keywords: Diabetes mellitus, continuous glucose monitoring, glycemic variability, average glycemia, glycemic control, stress, mood.


2021 ◽  
Vol 9 (1) ◽  
pp. e002032
Author(s):  
Marcela Martinez ◽  
Jimena Santamarina ◽  
Adrian Pavesi ◽  
Carla Musso ◽  
Guillermo E Umpierrez

Glycated hemoglobin is currently the gold standard for assessment of long-term glycemic control and response to medical treatment in patients with diabetes. Glycated hemoglobin, however, does not address fluctuations in blood glucose. Glycemic variability (GV) refers to fluctuations in blood glucose levels. Recent clinical data indicate that GV is associated with increased risk of hypoglycemia, microvascular and macrovascular complications, and mortality in patients with diabetes, independently of glycated hemoglobin level. The use of continuous glucose monitoring devices has markedly improved the assessment of GV in clinical practice and facilitated the assessment of GV as well as hypoglycemia and hyperglycemia events in patients with diabetes. We review current concepts on the definition and assessment of GV and its association with cardiovascular complications in patients with type 2 diabetes.


2020 ◽  
Author(s):  
Martina Parise ◽  
Linda Tartaglione ◽  
Antonio Cutruzzolà ◽  
Maria Ida Maiorino ◽  
Katherine Esposito ◽  
...  

BACKGROUND Telemedicine use in chronic disease management has markedly increased during health emergencies due to COVID-19. Diabetes and technologies supporting diabetes care, including glucose monitoring devices, software analyzing glucose data, and insulin delivering systems, would facilitate remote and structured disease management. Indeed, most of the currently available technologies to store and transfer web-based data to be shared with health care providers. OBJECTIVE During the COVID-19 pandemic, we provided our patients the opportunity to manage their diabetes remotely by implementing technology. Therefore, this study aimed to evaluate the effectiveness of 2 virtual visits on glycemic control parameters among patients with type 1 diabetes (T1D) during the lockdown period. METHODS This prospective observational study included T1D patients who completed 2 virtual visits during the lockdown period. The glucose outcomes that reflected the benefits of the virtual consultation were time in range (TIR), time above range, time below range, mean daily glucose, glucose management indicator (GMI), and glycemic variability. This metric was generated using specific computer programs that automatically upload data from the devices used to monitor blood or interstitial glucose levels. If needed, we changed the ongoing treatment at the first virtual visit. RESULTS Among 209 eligible patients with T1D, 166 completed 2 virtual visits, 35 failed to download glucose data, and 8 declined the visit. Among the patients not included in the study, we observed a significantly lower proportion of continuous glucose monitoring (CGM) and continuous subcutaneous insulin infusion (CSII) users (n=7/43, 16% vs n=155/166, 93.4% and n=9/43, 21% vs n=128/166, 77.1%, respectively; <i>P</i>&lt;.001) compared to patients who completed the study. TIR significantly increased from the first (62%, SD 18%) to the second (65%, SD 16%) virtual visit (<i>P</i>=.02); this increase was more marked among patients using the traditional meter (n=11; baseline TIR=55%, SD 17% and follow-up TIR=66%, SD 13%; <i>P</i>=.01) than among those using CGM, and in those with a baseline GMI of ≥7.5% (n=46; baseline TIR=45%, SD 15% and follow-up TIR=53%, SD 18%; <i>P</i>&lt;.001) than in those with a GMI of &lt;7.5% (n=120; baseline TIR=68%, SD 15% and follow-up TIR=69%, SD 15%; <i>P</i>=.98). The only variable independently associated with TIR was the change of ongoing therapy. The unstandardized beta coefficient (B) and 95% CI were 5 (95% CI 0.7-8.0) (<i>P</i>=.02). The type of glucose monitoring device and insulin delivery systems did not influence glucometric parameters. CONCLUSIONS These findings indicate that the structured virtual visits help maintain and improve glycemic control in situations where in-person visits are not feasible.


Sign in / Sign up

Export Citation Format

Share Document