dietary strategy
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 39)

H-INDEX

14
(FIVE YEARS 4)

Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 91
Author(s):  
Gracjan Różański ◽  
Derek Pheby ◽  
Julia L. Newton ◽  
Modra Murovska ◽  
Paweł Zalewski ◽  
...  

Metabolic-associated fatty liver disease (MAFLD), previously called non-alcoholic fatty liver disease (NAFLD), is the most common chronic liver disease worldwide. It is characterised by excessive fat accumulation in hepatocytes. Currently, no pharmacological therapy is effective for this disease, so non-pharmacological alternatives such as diet, supplementation or physical activity are being sought. For this reason, we reviewed the available databases to analyse the studies conducted to date using different modifications of intermittent fasting among patients with MAFLD. Eight studies using this dietary strategy were included in this review. The results obtained in the different trials are varied and do not allow a clear determination of the effect of the different types of intermittent fasting on anthropometric and biochemical parameters among patients with MAFLD. However, this type of diet seems to show some therapeutic potential, but further studies are needed.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4253
Author(s):  
Blerina Shkembi ◽  
Thom Huppertz

In this paper, we reviewed the role of dairy products in dietary zinc absorption. Dairy products can have a reasonable contribution for dietary zinc intake in Western diets, where dairy consumption is high. However, the co-ingestion of dairy products can also improve zinc absorption from other food products. Such improvements have been observed when dairy products (e.g., milk or yoghurt) were ingested together with food such as rice, tortillas or bread products, all of which are considered to be high-phytate foods with low inherent zinc absorption. For foods low in phytate, the co-ingestion of dairy products did not improve zinc absorption. Improved zinc absorption of zinc from high-phytate foods following co-ingestion with dairy products may be related to the beneficial effects of the citrate and phosphopeptides present in dairy products. Considering that the main dietary zinc sources in areas in the world where zinc deficiency is most prevalent are typically high in phytate, the inclusion of dairy products in meals may be a viable dietary strategy to improve zinc absorption.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3476
Author(s):  
Rebecca A. G. Christensen ◽  
Amy A. Kirkham

There is substantial overlap in risk factors for the pathogenesis and progression of breast cancer (BC) and cardiovascular disease (CVD), including obesity, metabolic disturbances, and chronic inflammation. These unifying features remain prevalent after a BC diagnosis and are exacerbated by BC treatment, resulting in elevated CVD risk among survivors. Thus, therapies that target these risk factors or mechanisms are likely to be effective for the prevention or progression of both conditions. In this narrative review, we propose time-restricted eating (TRE) as a simple lifestyle therapy to address many upstream causative factors associated with both BC and CVD. TRE is simple dietary strategy that typically involves the consumption of ad libitum energy intake within 8 h, followed by a 16-h fast. We describe the feasibility and safety of TRE and the available evidence for the impact of TRE on metabolic, cardiovascular, and cancer-specific health benefits. We also highlight potential solutions for overcoming barriers to adoption and adherence and areas requiring future research. In composite, we make the case for the use of TRE as a novel, safe, and feasible intervention for primary and secondary BC prevention, as well as tertiary prevention as it relates to CVD in BC survivors.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3102
Author(s):  
Stefan Gerardus Camps ◽  
Bhupinder Kaur ◽  
Joseph Lim ◽  
Yi Ting Loo ◽  
Eunice Pang ◽  
...  

A reduction in carbohydrate intake and low-carbohydrate diets are often advocated to prevent and manage diabetes. However, limiting or eliminating carbohydrates may not be a long-term sustainable and maintainable approach for everyone. Alternatively, diet strategies to modulate glycemia can focus on the glycemic index (GI) of foods and glycemic load (GL) of meals. To assess the effect of a reduction in glycemic load of a 24 h diet by incorporating innovative functional ingredients (β-glucan, isomaltulose) and alternative low GI Asian staples (noodles, rice)on glycemic control and variability, twelve Chinese men (Age: 27.0 ± 5.1 years; BMI:21.6 ± 1.8kg/m2) followed two isocaloric, typically Asian, 24h diets with either a reduced glycemic load (LGL) or high glycemic load (HGL) in a randomized, single-blind, controlled, cross-over design. Test meals included breakfast, lunch, snack and dinner and the daily GL was reduced by 37% in the LGL diet. Continuous glucose monitoring provided 24 h glycemic excursion and variability parameters: incremental area under the curve (iAUC), max glucose concentration (Max), max glucose range, glucose standard deviation (SD), and mean amplitude of glycemic excursion (MAGE), time in range (TIR). Over 24h, the LGL diet resulted in a decrease in glucose Max (8.12 vs. 6.90 mmol/L; p = 0.0024), glucose range (3.78 vs. 2.21 mmol/L; p = 0.0005), glucose SD (0.78 vs. 0.43 mmol/L; p = 0.0002), mean amplitude of glycemic excursion (2.109 vs. 1.008; p < 0.0001), and increase in 4.5–6.5mmol/L TIR (82.2 vs. 94.6%; p = 0.009), compared to the HGL diet. The glucose iAUC, MAX, range and SD improved during the 2 h post-prandial window of each LGL meal, and this effect was more pronounced later in the day. The current results validate the dietary strategy of incorporating innovative functional ingredients (β-glucan, isomaltulose) and replacing Asian staples with alternative low GI carbohydrate sources to reduce daily glycemic load to improve glycemic control and variability as a viable alternative to the reduction in carbohydrate intake alone. These observations provide substantial public health support to encourage the consumption of staples of low GI/GL to reduce glucose levels and glycemic variability. Furthermore, there is growing evidence that the role of chrononutrition, as reported in this paper, requires further examination and should be considered as an important addition to the understanding of glucose homeostasis variation throughout the day.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bettina Schuppelius ◽  
Beeke Peters ◽  
Agnieszka Ottawa ◽  
Olga Pivovarova-Ramich

Time-restricted eating (TRE), a dietary approach limiting the daily eating window, has attracted increasing attention in media and research. The eating behavior in our modern society is often characterized by prolonged and erratic daily eating patterns, which might be associated with increased risk of obesity, diabetes, and cardiovascular diseases. In contrast, recent evidence suggests that TRE might support weight loss, improve cardiometabolic health, and overall wellbeing, but the data are controversial. The present work reviews how TRE affects glucose and lipid metabolism based on clinical trials published until June 2021. A range of trials demonstrated that TRE intervention lowered fasting and postprandial glucose levels in response to a standard meal or oral glucose tolerance test, as well as mean 24-h glucose and glycemic excursions assessed using continuous glucose monitoring. In addition, fasting insulin decreases and improvement of insulin sensitivity were demonstrated. These changes were often accompanied by the decrease of blood triglyceride and cholesterol levels. However, a number of studies found that TRE had either adverse or no effects on glycemic and lipid traits, which might be explained by the different study designs (i.e., fasting/eating duration, daytime of eating, changes of calorie intake, duration of intervention) and study subject cohorts (metabolic status, age, gender, chronotype, etc.). To summarize, TRE represents an attractive and easy-to-adapt dietary strategy for the prevention and therapy of glucose and lipid metabolic disturbances. However, carefully controlled future TRE studies are needed to confirm these effects to understand the underlying mechanisms and assess the applicability of personalized interventions.


2021 ◽  
Vol 90 (2) ◽  
pp. e253
Author(s):  
Małgorzata Jamka ◽  
Maria Wasiewicz-Gajdzis ◽  
Jarosław Walkowiak

The prevalence of obesity has been increasing worldwide; however, the optimal dietary strategy for improving anthropometric and cardiometabolic parameters remains unknown. This review discusses the effectiveness of popular diets in the management of obesity and obesity-related comorbidities. The differences among popular diets are small and associated with dietary adherence and caloric intake. The Mediterranean diet is most effective in facilitating weight loss and improving cardiometabolic parameters, although the Central European diet seems to be a good alternative.


2021 ◽  
Vol 8 ◽  
Author(s):  
Eric Williamson ◽  
Daniel R. Moore

Muscle protein is constantly “turning over” through the breakdown of old/damaged proteins and the resynthesis of new functional proteins, the algebraic difference determining net muscle gain, maintenance, or loss. This turnover, which is sensitive to the nutritional environment, ultimately determines the mass, quality, and health of skeletal muscle over time. Intermittent fasting has become a topic of interest in the health community as an avenue to improve health and body composition primarily via caloric deficiency as well as enhanced lipolysis and fat oxidation secondary to attenuated daily insulin response. However, this approach belies the established anti-catabolic effect of insulin on skeletal muscle. More importantly, muscle protein synthesis, which is the primary regulated turnover variable in healthy humans, is stimulated by the consumption of dietary amino acids, a process that is saturated at a moderate protein intake. While limited research has explored the effect of intermittent fasting on muscle-related outcomes, we propose that infrequent meal feeding and periods of prolonged fasting characteristic of models of intermittent fasting may be counter-productive to optimizing muscle protein turnover and net muscle protein balance. The present commentary will discuss the regulation of muscle protein turnover across fasted and fed cycles and contrast it with studies exploring how dietary manipulation alters the partitioning of fat and lean body mass. It is our position that intermittent fasting likely represents a suboptimal dietary approach to remodel skeletal muscle, which could impact the ability to maintain or enhance muscle mass and quality, especially during periods of reduced energy availability.


Sign in / Sign up

Export Citation Format

Share Document