scholarly journals Augmented Renal Clearance, Muscle Catabolism and Urinary Nitrogen Loss: Implications for Nutritional Support in Critically Ill Trauma Patients

Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3554
Author(s):  
Guilhem Dreydemy ◽  
Alexis Coussy ◽  
Alexandre Lannou ◽  
Laurent Petit ◽  
Matthieu Biais ◽  
...  

The main objective of this pilot study was to determine the association between augmented renal clearance (ARC), urinary nitrogen loss and muscle wasting in critically ill trauma patients. We conducted a retrospective analysis of a local database in 162 critically ill trauma patients without chronic renal dysfunction. Nutritional-related parameters and 24 h urinary biochemical analyses were prospectively collected and averaged over the first ten days after admission. Augmented renal clearance was defined by a mean creatinine clearance (CLCR) > 130 mL/min/1.73 m2. The main outcome was the cumulated nitrogen balance at day 10. The secondary outcome was the variation of muscle psoas cross-sectional area (ΔCSA) calculated in the subgroup of patients who underwent at least two abdominal CT scans during the ICU length of stay. Overall, there was a significant correlation between mean CLCR and mean urinary nitrogen loss (normalized coefficient: 0.47 ± 0.07, p < 0.0001). ARC was associated with a significantly higher urinary nitrogen loss (17 ± 5 vs. 14 ± 4 g/day, p < 0.0001) and a lower nitrogen balance (−6 ± 5 vs. −4 ± 5 g/day, p = 0.0002), without difference regarding the mean protein intake (0.7 ± 0.2 vs. 0.7 ± 0.3 g/kg/day, p = 0.260). In the subgroup of patients who underwent a second abdominal CT scan (N = 47), both ΔCSA and %ΔCSA were higher in ARC patients (−33 [−41; −25] vs. −15 [−29; −5] mm2/day, p = 0.010 and −3 [−3; −2] vs. −1 [−3; −1] %/day, p = 0.008). Critically ill trauma patients with ARC are thus characterized by a lower nitrogen balance and increased muscle loss over the 10 first days after ICU admission. The interest of an increased protein intake (>1.5 g/kg/day) in such patients remains a matter of controversy and must be confirmed by further randomized trials.

2019 ◽  
Vol 38 (4) ◽  
pp. 371-375 ◽  
Author(s):  
Cedric Carrie ◽  
Alexandre Lannou ◽  
Sebastien Rubin ◽  
Hugues De Courson ◽  
Laurent Petit ◽  
...  

2021 ◽  
Vol 50 (1) ◽  
pp. 779-779
Author(s):  
Timothy Rice ◽  
Christopher Droege ◽  
Molly Droege ◽  
Eric Mueller ◽  
Neil Ernst ◽  
...  

2014 ◽  
Vol 77 ◽  
pp. S163-S170 ◽  
Author(s):  
Kevin S. Akers ◽  
Krista L. Niece ◽  
Kevin K. Chung ◽  
Jeremy W. Cannon ◽  
Jason M. Cota ◽  
...  

2018 ◽  
Vol 46 (1) ◽  
pp. 672-672
Author(s):  
Lauren Flieller ◽  
Nicholas Farina ◽  
Michael Heung ◽  
Lenar Yessayan ◽  
Melissa Pleva

Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Pierre Singer ◽  
Itai Bendavid ◽  
Ilana BenArie ◽  
Liran Stadlander ◽  
Ilya Kagan

Abstract Background and aims Combining energy and protein targets during the acute phase of critical illness is challenging. Energy should be provided progressively to reach targets while avoiding overfeeding and ensuring sufficient protein provision. This prospective observational study evaluated the feasibility of achieving protein targets guided by 24-h urinary nitrogen excretion while avoiding overfeeding when administering a high protein-to-energy ratio enteral nutrition (EN) formula. Methods Critically ill adult mechanically ventilated patients with an APACHE II score > 15, SOFA > 4 and without gastrointestinal dysfunction received EN with hypocaloric content for 7 days. Protein need was determined by 24-h urinary nitrogen excretion, up to 1.2 g/kg (Group A, N = 10) or up to 1.5 g/kg (Group B, N = 22). Variables assessed included nitrogen intake, excretion, balance; resting energy expenditure (REE); phase angle (PhA); gastrointestinal tolerance of EN. Results Demographic characteristics of groups were similar. Protein target was achieved using urinary nitrogen excretion measurements. Nitrogen balance worsened in Group A but improved in Group B. Daily protein and calorie intake and balance were significantly increased in Group B compared to Group A. REE was correlated to PhA measurements. Gastric tolerance of EN was good. Conclusions Achieving the protein target using urinary nitrogen loss up to 1.5 g/kg/day was feasible in this hypercatabolic population. Reaching a higher protein and calorie target did not induce higher nitrogen excretion and was associated with improved nitrogen balance and a better energy intake without overfeeding. PhA appears to be related to REE and may reflect metabolism level, suggestive of a new phenotype for nutritional status. Trial registration 0795-18-RMC.


2018 ◽  
Vol 57 (9) ◽  
pp. 1107-1121 ◽  
Author(s):  
Idoia Bilbao-Meseguer ◽  
Alicia Rodríguez-Gascón ◽  
Helena Barrasa ◽  
Arantxazu Isla ◽  
María Ángeles Solinís

2017 ◽  
Vol 18 (9) ◽  
pp. 901-902 ◽  
Author(s):  
John N. van den Anker ◽  
Catherijne A. J. Knibbe ◽  
Dick Tibboel

2018 ◽  
Vol 108 (5) ◽  
pp. 988-996 ◽  
Author(s):  
Y M Arabi ◽  
H M Al-Dorzi ◽  
S Mehta ◽  
H M Tamim ◽  
S H Haddad ◽  
...  

ABSTRACT Background The optimal amount of protein intake in critically ill patients is uncertain. Objective In this post hoc analysis of the PermiT (Permissive Underfeeding vs. Target Enteral Feeding in Adult Critically Ill Patients) trial, we tested the hypothesis that higher total protein intake was associated with lower 90-d mortality and improved protein biomarkers in critically ill patients. Design In this post hoc analysis of the PermiT trial, we included patients who received enteral feeding for ≥3 consecutive days. Using the median protein intake of the cohort as a cutoff, patients were categorized into 2 groups: a higher-protein group (>0.80 g · kg–1 · d–1) and a lower-protein group (≤0.80 g · kg–1 · d–1). We developed a propensity score for receiving higher protein. Primary outcome was 90-d mortality. We also compared serial values of prealbumin, transferrin, 24-h urinary nitrogen, and 24-h nitrogen balance on days 1, 7, and 14. Results Among the 729 patients included in this analysis, the average protein intake was 0.8 ± 0.3 g · kg–1 · d–1 [1.0 ± 0.2 g · kg–1 · d–1 in the higher-protein group (n = 365) and 0.6 ± 0.2 g · kg–1 · d–1 in the lower-protein group (n = 364); P < 0.0001]. There was no difference in 90-d mortality between the 2 groups [88/364 (24.2%) compared with 94/363 (25.9%), propensity score–adjusted OR: 0.80; 95% CI: 0.56, 1.16; P = 0.24]. Higher protein intake was associated with an increase in 24-h urea nitrogen excretion compared with lower protein intake, but without a significant change in prealbumin, transferrin, or 24-h nitrogen balance. Conclusions In the PermiT trial, a moderate difference in protein intake was not associated with lower mortality. Higher protein intake was associated with increased nitrogen excretion in the urine without a corresponding change in prealbumin, transferrin, or nitrogen balance. Protein intake needs to be tested in adequately powered randomized controlled trials targeting larger differences in protein intake in high-risk populations.


Sign in / Sign up

Export Citation Format

Share Document