scholarly journals Effect of Acute and Chronic Oral l-Carnitine Supplementation on Exercise Performance Based on the Exercise Intensity: A Systematic Review

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4359
Author(s):  
Juan Mielgo-Ayuso ◽  
Laura Pietrantonio ◽  
Aitor Viribay ◽  
Julio Calleja-González ◽  
Jerónimo González-Bernal ◽  
...  

l-Carnitine (l-C) and any of its forms (glycine-propionyl l-Carnitine (GPL-C) or l-Carnitine l-tartrate (l-CLT)) has been frequently recommended as a supplement to improve sports performance due to, among others, its role in fat metabolism and in maintaining the mitochondrial acetyl-CoA/CoA ratio. The main aim of the present systematic review was to determine the effects of oral l-C supplementation on moderate- (50–79% V˙O2 max) and high-intensity (≥80% V˙O2 max) exercise performance and to show the effective doses and ideal timing of its intake. A structured search was performed according to the PRISMA® statement and the PICOS guidelines in the Web of Science (WOS) and Scopus databases, including selected data obtained up to 24 October 2021. The search included studies where l-C or glycine-propionyl l-Carnitine (GPL-C) supplementation was compared with a placebo in an identical situation and tested its effects on high and/or low–moderate performance. The trials that used the supplementation of l-C together with additional supplements were eliminated. There were no applied filters on physical fitness level, race, or age of the participants. The methodological quality of studies was evaluated by the McMaster Critical Review Form. Of the 220 articles obtained, 11 were finally included in this systematic review. Six studies used l-C, while three studies used l-CLT, and two others combined the molecule propionyl l-Carnitine (PL-C) with GPL-C. Five studies analyzed chronic supplementation (4–24 weeks) and six studies used an acute administration (<7 days). The administration doses in this chronic supplementation varied from 1 to 3 g/day; in acute supplementation, oral l-C supplementation doses ranged from 3 to 4 g. On the one hand, the effects of oral l-C supplementation on high-intensity exercise performance variables were analyzed in nine studies. Four of them measured the effects of chronic supplementation (lower rating of perceived exertion (RPE) after 30 min at 80% V˙O2 max on cycle ergometer and higher work capacity in “all-out” tests, peak power in a Wingate test, and the number of repetitions and volume lifted in leg press exercises), and five studies analyzed the effects of acute supplementation (lower RPE after graded exercise test on the treadmill until exhaustion and higher peak and average power in the Wingate cycle ergometer test). On the other hand, the effects of l-C supplementation on moderate exercise performance variables were observed in six studies. Out of those, three measured the effect of an acute supplementation, and three described the effect of a chronic supplementation, but no significant improvements on performance were found. In summary, l-C supplementation with 3 to 4 g ingested between 60 and 90 min before testing or 2 to 2.72 g/day for 9 to 24 weeks improved high-intensity exercise performance. However, chronic or acute l-C or GPL-C supplementation did not present improvements on moderate exercise performance.

Author(s):  
Lukas Beis ◽  
Yaser Mohammad ◽  
Chris Easton ◽  
Yannis P. Pitsiladis

Oral supplementation with glycine-arginine-α-ketoisocaproic acid (GAKIC) has previously been shown to improve exhaustive high-intensity exercise performance. There are no controlled studies involving GAKIC supplementation in well-trained subjects. The aim of the current study was to examine the effects of GAKIC supplementation on fatigue during high-intensity, repeated cycle sprints in trained cyclists. After at least 2 familiarization trials, 10 well-trained male cyclists completed 2 supramaximal sprint tests each involving 10 sprints of 10 s separated by 50-s rest intervals on an electrically braked cycle ergometer. Subjects ingested 11.2 g of GAKIC or placebo (Pl) during a period of 45 min before the 2 experimental trials, administered in a randomized and double-blind fashion. Peak power declined from the 1st sprint (M ± SD; Pl 1,332 ± 307 W, GAKIC 1,367 ± 342 W) to the 10th sprint (Pl 1,091 ± 229 W, GAKIC 1,061 ± 272 W) and did not differ between conditions (p = .88). Mean power declined from the 1st sprint (Pl 892 ± 151 W, GAKIC 892 ± 153 W) to the 10th sprint (Pl 766 ± 120 W, GAKIC 752 ± 138 W) and did not differ between conditions (p = .96). The fatigue index remained at ~38% throughout the series of sprints and did not differ between conditions (p = .99). Heart rate and ratings of perceived exertion increased from the 1st sprint to the 10th sprint and did not differ between conditions (p = .11 and p = .83, respectively). In contrast to previous studies in untrained individuals, these results suggest that GAKIC has no ergogenic effect on repeated bouts of high-intensity exercise in trained individuals.


2015 ◽  
Vol 30 (6) ◽  
pp. e155-e161
Author(s):  
N.M. Okuno ◽  
L.F. Soares-Caldeira ◽  
V.F. Milanez ◽  
L.A.B. Perandini

Author(s):  
Todd A. Astorino ◽  
Michael N. Terzi ◽  
Daniel W. Roberson ◽  
Timothy R. Burnett

Caffeine has been shown to reduce leg-muscle pain during submaximal cycle ergometry, as well as in response to eccentric exercise. However, less is known about its analgesic properties during non-steadystate, high-intensity exercise. The primary aim of this study was to examine the effect of 2 doses of caffeine on leg pain and rating of perceived exertion (RPE) during repeated bouts of high-intensity exercise. Fifteen active men (age 26.4 ± 3.9 yr) completed 2 bouts of 40 repetitions of “all-out” knee extension and flexion of the dominant leg at a contraction velocity equal to 180°/s. Before each trial, subjects abstained from caffeine intake and intense exercise for 48 hr. Over 3 days separated by 48 hr, subjects ingested 1 of 3 treatments (5 mg/kg or 2 mg/kg of anhydrous caffeine or placebo) in a randomized, single-blind, counterbalanced, crossover design. Leg-muscle pain and RPE were assessed during and after exercise using established categorical scales. Across all treatments, pain perception was significantly increased (p < .05) during exercise, as well as from Bout 1 to 2, yet there was no effect (p > .05) of caffeine on pain perception or RPE. Various measures of muscle function were improved (p < .05) with a 5-mg/kg caffeine dose vs. the other treatments. In the 5-mg/kg trial, it is plausible that subjects were able to perform better with similar levels of pain perception and exertion.


2017 ◽  
Vol 23 (3) ◽  
Author(s):  
Victor José Bastos-Silva ◽  
Gustavo Gomes de Araujo ◽  
Sérgio Victor dos Santos Franco ◽  
Alan de Albuquerque Melo ◽  
Sara Kely Learsi ◽  
...  

1996 ◽  
Vol 83 (1) ◽  
pp. 317-318 ◽  
Author(s):  
B. R. Abadie

7 subjects exercised while viewing and not viewing the Rating of Perceived Exertion scale during exercise to assess whether ratings of perceived exertion are influenced by viewing the scale itself. Analysis suggested that monitoring moderate to high intensity exercise without viewing the RPE scale may result in an underestimation of exertion.


2021 ◽  
pp. 003151252110100
Author(s):  
Elaine Domingues Alves ◽  
Ursula Ferreira Julio ◽  
Valéria Leme Gonçalves Panissa ◽  
Emerson Franchini ◽  
Monica Yuri Takito

Given humans’ limited ability to recall past experiences for evaluation, scholars have proposed the peak-end rule stating that if perceived discomfort at the end of an aversive experience is lower than the peak discomfort experienced, the aversive experience will be remembered more positively. The purpose of this study was to evaluate the peak-end rule as applied to high-intensity interval exercise (HIIE). Participants were 30 inactive men ( M age = 27.9, SD =  5.2 years). In the first session they performed a graded exercise test on cycle-ergometer to determine their maximal aerobic power (MAP) ( M = 233, SD = 35W); and, in the second and third sessions, they performed two HIIE protocols in randomized order: (a) Short trial – 20-minutes of HIIE, composed of 30-second efforts at 100% of MAP interspersed by 30-seconds of passive recovery; and (b) Long trial – 20-minutes of the short trial, plus 10-minutes more of HIIE, decreasing 3% of MAP in each additional bout, resulting in 70% of MAP in the last bout. During exercise, we recorded the participants’ rating of perceived exertion (RPE) and affect, using the Feeling Scale (FS). At 30-minutes post-exercise, we again recorded the participants’ affect, using the Global Affect Evaluation (GAE) and their session-RPE, and we recorded their enjoyment, using the Physical Activity Enjoyment Scale (PACES). In the last session, the participants chose a favorite protocol to repeat. All sessions were interspersed by at least 72 hours. The 10-minutes extra HIIE in the Long-trial condition resulted decreased heart rate values ( M = 157, SD = 13bpm to M = 144, SD = 14bpm; p < 0.001), but psychological responses during and after exercise did not differ, nor did participants’ preferred HIIE protocol. As the load drop for the Long-trial was not enough to change the psychological responses during exercise, there was no difference in the retrospective evaluation as the peak-end rule would have suggested.


2017 ◽  
Vol 56 (1) ◽  
pp. 127-137 ◽  
Author(s):  
Carolina Cabral-Santos ◽  
José Gerosa-Neto ◽  
Daniela S. Inoue ◽  
Fabrício E. Rossi ◽  
Jason M. Cholewa ◽  
...  

AbstractThe aim of this study was to investigate the physiological responses to moderate-intensity continuous and high-intensity intermittent exercise. Twelve physically active male subjects were recruited and completed a 5-km run on a treadmill in two experimental sessions in randomized order: continuously (70% sVO2max) and intermittently (1:1 min at sVO2max). Oxygen uptake, excess post-exercise oxygen consumption, lactate concentration, heart rate and rating of perceived exertion data were recorded during and after each session. The lactate levels exhibited higher values immediately post-exercise than at rest (High-Intensity: 1.43 ± 0.25 to 7.36 ± 2.78; Moderate-Intensity: 1.64 ± 1.01 to 4.05 ± 1.52 mmol⋅L−1, p = 0.0004), but High-Intensity promoted higher values (p = 0.001) than Moderate-Intensity. There was a difference across time on oxygen uptake at all moments tested in both groups (High-Intensity: 100.19 ± 8.15L; Moderate-Intensity: 88.35 ± 11.46, p < 0.001). Both exercise conditions promoted increases in excess postexercise oxygen consumption (High-Intensity: 6.61 ± 1.85 L; Moderate-Intensity: 5.32 ± 2.39 L, p < 0.005), but higher values were observed in the High-Intensity exercise protocol. High-Intensity was more effective at modifying the heart rate and rating of perceived exertion (High-Intensity: 183 ± 12.54 and 19; Moderate-Intensity: 172 ± 8.5 and 16, respectively, p < 0.05). In conclusion, over the same distance, Moderate-Intensity and High-Intensity exercise exhibited different lactate concentrations, heart rate and rating of perceived exertion. As expected, the metabolic contribution also differed, and High-Intensity induced higher energy expenditure, however, the total duration of the session may have to be taken into account. Moreover, when following moderate-intensity training, the percentage of sVO2max and the anaerobic threshold might influence exercise and training responses.


2003 ◽  
Vol 35 (10) ◽  
pp. 1751-1754 ◽  
Author(s):  
CHRISTOPHER W. HERMAN ◽  
PAUL R. NAGELKIRK ◽  
JAMES M. PIVARNIK ◽  
CHRISTOPHER J. WOMACK

2021 ◽  
Vol 25 (3) ◽  
pp. 8-15
Author(s):  
Aki Kawamura ◽  
Shun Hashimoto ◽  
Miho Suzuki ◽  
Hiromasa Ueno ◽  
Masaaki Sugita

[Purpose] Excessive reactive oxygen species (ROS) induced by prolonged high-intensity exercise can cause structural and functional damage. Antioxidant polyphenol supplementation, which reduces ROS levels, may improve high-intensity exercise performance. We evaluated the effect of lychee fruit extract, which contains high levels of low-molecular-weight oligomerized polyphenols, on high-intensity exercise performance.[Methods] Ten male athletes were included in an open-label trial that consisted of control and intervention phases, with a 7-day washout period between phases. The participants were administered oligomerized lychee fruit extract for seven days, whereas no intervention was given in the control phase. High-intensity intermittent exercise and the Wingate test were performed. The power output, blood lactate levels, reactive oxygen metabolite levels, biological antioxidant potential, heart rate, and rate of perceived exertion were measured.[Results] The average power output was significantly higher in the intervention phase than in the control phase (P < 0.01), while the change in blood lactate levels was significantly lower in the intervention phase than in the control phase (P < 0.05). The average heart rate was significantly higher in the intervention phase than in the control phase (P < 0.05), without changing the rate of perceived exertion. Although there was no difference in reactive oxygen metabolite levels between the phase, the change in biological antioxidant potential was larger in the intervention phase than in the control phase (P = 0.06). The Wingate test showed no significant differences between the phase.[Conclusion] Short-term loading with oligomerized lychee fruit extract may increase performance during high-intensity intermittent exercise by improving metabolism.


Sign in / Sign up

Export Citation Format

Share Document