Failure of Glycine-Arginine-α-Ketoisocaproic Acid to Improve High-Intensity Exercise Performance in Trained Cyclists

Author(s):  
Lukas Beis ◽  
Yaser Mohammad ◽  
Chris Easton ◽  
Yannis P. Pitsiladis

Oral supplementation with glycine-arginine-α-ketoisocaproic acid (GAKIC) has previously been shown to improve exhaustive high-intensity exercise performance. There are no controlled studies involving GAKIC supplementation in well-trained subjects. The aim of the current study was to examine the effects of GAKIC supplementation on fatigue during high-intensity, repeated cycle sprints in trained cyclists. After at least 2 familiarization trials, 10 well-trained male cyclists completed 2 supramaximal sprint tests each involving 10 sprints of 10 s separated by 50-s rest intervals on an electrically braked cycle ergometer. Subjects ingested 11.2 g of GAKIC or placebo (Pl) during a period of 45 min before the 2 experimental trials, administered in a randomized and double-blind fashion. Peak power declined from the 1st sprint (M ± SD; Pl 1,332 ± 307 W, GAKIC 1,367 ± 342 W) to the 10th sprint (Pl 1,091 ± 229 W, GAKIC 1,061 ± 272 W) and did not differ between conditions (p = .88). Mean power declined from the 1st sprint (Pl 892 ± 151 W, GAKIC 892 ± 153 W) to the 10th sprint (Pl 766 ± 120 W, GAKIC 752 ± 138 W) and did not differ between conditions (p = .96). The fatigue index remained at ~38% throughout the series of sprints and did not differ between conditions (p = .99). Heart rate and ratings of perceived exertion increased from the 1st sprint to the 10th sprint and did not differ between conditions (p = .11 and p = .83, respectively). In contrast to previous studies in untrained individuals, these results suggest that GAKIC has no ergogenic effect on repeated bouts of high-intensity exercise in trained individuals.

1989 ◽  
Vol 67 (5) ◽  
pp. 1862-1867 ◽  
Author(s):  
A. Swank ◽  
R. J. Robertson

The purpose of this study was to evaluate the effects of metabolic alkalosis on differentiated ratings of perceived exertion during intermittent high-intensity exercise. Six endurance-trained females participated as subjects in this investigation. Each subject underwent three separate experimental trials in which NaHCO3 was ingested in either a single (0.3 g NaHCO3/kg body wt) or periodic schedule (0.12 g NaHCO3/kg body wt initially, with 0.18 g/kg body wt distributed in equal doses before each 5-min exercise bout). Calcium carbonate served as a placebo control. An intermittent exercise protocol was used in which each subject rode a cycle ergometer at 90% maximum O2 consumption for 5 min. Within each acid-base condition, the exercise protocol was repeated three times with 10-min rest periods interspersed. Differentiated ratings of perceived exertion for the legs (RPE-L), chest (RPE-C), and overall body (RPE-O) were attenuated under alkalotic treatment relative to placebo control regardless of pattern of NaHCO3 administration. RPE-L, RPE-C, and RPE-O were negatively correlated to the bicarbonate concentration of venous blood. This investigation suggests that perception of effort during high-intensity intermittent exercise can be related to buffering capacity of the blood.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4359
Author(s):  
Juan Mielgo-Ayuso ◽  
Laura Pietrantonio ◽  
Aitor Viribay ◽  
Julio Calleja-González ◽  
Jerónimo González-Bernal ◽  
...  

l-Carnitine (l-C) and any of its forms (glycine-propionyl l-Carnitine (GPL-C) or l-Carnitine l-tartrate (l-CLT)) has been frequently recommended as a supplement to improve sports performance due to, among others, its role in fat metabolism and in maintaining the mitochondrial acetyl-CoA/CoA ratio. The main aim of the present systematic review was to determine the effects of oral l-C supplementation on moderate- (50–79% V˙O2 max) and high-intensity (≥80% V˙O2 max) exercise performance and to show the effective doses and ideal timing of its intake. A structured search was performed according to the PRISMA® statement and the PICOS guidelines in the Web of Science (WOS) and Scopus databases, including selected data obtained up to 24 October 2021. The search included studies where l-C or glycine-propionyl l-Carnitine (GPL-C) supplementation was compared with a placebo in an identical situation and tested its effects on high and/or low–moderate performance. The trials that used the supplementation of l-C together with additional supplements were eliminated. There were no applied filters on physical fitness level, race, or age of the participants. The methodological quality of studies was evaluated by the McMaster Critical Review Form. Of the 220 articles obtained, 11 were finally included in this systematic review. Six studies used l-C, while three studies used l-CLT, and two others combined the molecule propionyl l-Carnitine (PL-C) with GPL-C. Five studies analyzed chronic supplementation (4–24 weeks) and six studies used an acute administration (<7 days). The administration doses in this chronic supplementation varied from 1 to 3 g/day; in acute supplementation, oral l-C supplementation doses ranged from 3 to 4 g. On the one hand, the effects of oral l-C supplementation on high-intensity exercise performance variables were analyzed in nine studies. Four of them measured the effects of chronic supplementation (lower rating of perceived exertion (RPE) after 30 min at 80% V˙O2 max on cycle ergometer and higher work capacity in “all-out” tests, peak power in a Wingate test, and the number of repetitions and volume lifted in leg press exercises), and five studies analyzed the effects of acute supplementation (lower RPE after graded exercise test on the treadmill until exhaustion and higher peak and average power in the Wingate cycle ergometer test). On the other hand, the effects of l-C supplementation on moderate exercise performance variables were observed in six studies. Out of those, three measured the effect of an acute supplementation, and three described the effect of a chronic supplementation, but no significant improvements on performance were found. In summary, l-C supplementation with 3 to 4 g ingested between 60 and 90 min before testing or 2 to 2.72 g/day for 9 to 24 weeks improved high-intensity exercise performance. However, chronic or acute l-C or GPL-C supplementation did not present improvements on moderate exercise performance.


1991 ◽  
Vol 1 (4) ◽  
pp. 366-377 ◽  
Author(s):  
Carl M. Maresh ◽  
Catherine L. Gabaree ◽  
Jay R. Hoffman ◽  
Daniel R. Hannon ◽  
Michael R. Deschenes ◽  
...  

To examine the effect of a nutritional supplement (ATP-E™) on high intensity exercise performance, 23 physically active males volunteered to perform six Wingate Anaerobic Power tests. Tests were performed prior to and at 14 and 21 days during ATP-E~o~r placebo ingestion. f i e experiment followed a double-blind and random-order design. Twelve subjects (responders, R) showed an increase in preexercise blood ATP on Day 14 of ATP-E™ ingestion compared to control measures. The remaining 11 subjects (nonresponders, NR) had no change in pree~e~cibselo od ATP. Peak power and mean power were unchanged for both R and NR subjects across the exercise tests, but R experienced a decrease (p< 0.05) in immediate postexercise plasma lactate on Day 14 of ATP-E™ testing compared to their control measures. NR had no change in peak plasma lactate at any time during the study. The results suggest that short-term high intensity exercise performance was maintained in R with less reliance on anaerobic metabolism, and that response was evident following 14 days of ATP-E™ ingestion.


2012 ◽  
Vol 22 (3) ◽  
pp. 175-183 ◽  
Author(s):  
Andrew E. Kilding ◽  
Claire Overton ◽  
Jonathan Gleave

Purpose:To determine the effects of ingesting caffeine (CAFF) and sodium bicarbonate (SB), taken individually and simultaneously, on 3-km cycling time-trial (TT) performance.Method:Ten well-trained cyclists, age 24.2 ± 5.4 yr, participated in this acute-treatment, double-blind, crossover study that involved four 3-km cycling TTs performed on separate days. Before each TT, participants ingested either 3 mg/kg body mass (BM) of CAFF, 0.3 g · kg−1 · BM−1 of SB, a combination of the two (CAFF+SB), or a placebo (PLAC). They completed each 3-km TT on a laboratory-based cycle ergometer, during which physiological, perceptual, and performance measurements were determined. For statistical analysis, the minimal worthwhile difference was considered ~1% based on previous research.Results:Pretrial pH and HCO3 were higher in SB and CAFF+SB than in the CAFF and PLAC trials. Differences across treatments for perceived exertion and gastric discomfort were mostly unclear. Compared with PLAC, mean power output during the 3-km TT was higher in CAFF, SB, and CAFF+SB trials (2.4%, 2.6%, 2.7% respectively), resulting in faster performance times (–0.9, –1.2, –1.2% respectively). Effect sizes for all trials were small (0.21–0.24).Conclusions:When ingested individually, both CAFF and SB enhance high-intensity cycling TT performance in trained cyclists. However, the ergogenic effect of these 2 popular supplements was not additive, bringing into question the efficacy of coingesting the 2 supplements before short-duration high-intensity exercise. In this study there were no negative effects of combining CAFF and SB, 2 relatively inexpensive and safe supplements.


2007 ◽  
Vol 17 (2) ◽  
pp. 206-217 ◽  
Author(s):  
Guilherme Giannini Artioli ◽  
Bruno Gualano ◽  
Desiré Ferreira Coelho ◽  
Fabiana Braga Benatti ◽  
Alessandra Whyte Gailey ◽  
...  

The aim of the present study was to investigate whether pre exercise sodium-bicarbonate ingestion improves judo-related performance. The study used 2 different protocols to evaluate performance: 3 bouts of a specific judo test (n = 9) and 4 bouts of the Wingate test for upper limbs (n = 14). In both protocols athletes ingested 0.3 g/kg of sodium bicarbonate or placebo 2 h before the tests. Blood samples were collected to determine lactate level, and levels of perceived exertion were measured throughout the trials. The study used a double-blind, counterbalanced, crossover design. Ingestion of sodium bicarbonate improved performance in Bouts 2 and 3 of Protocol 1 (P < 0.05), mean power in Bouts 3 and 4 of Protocol 2 (P < 0.05), and peak power in Bout 4 of Protocol 2 (P < 0.05). Ingestion of bicarbonate increased lactate concentration in Protocol 1 (P < 0.05) but not in Protocol 2. Ratings of perceived exertion did not differ between treatments. In conclusion, sodium bicarbonate improves judo-related performance and increases blood lactate concentration but has no effect on perceived exertion.


1991 ◽  
Vol 1 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Jeffrey J. Zachwieja ◽  
David L. Costill ◽  
Jeffrey J. Widrick ◽  
Dawn E. Anderson ◽  
Glenn K. McConell

The intent of this study was to determine whether adding carbonation to either water or a low calorie sport drink would affect gastric emptying (GE). Fifteen subjects rode for 20 minutes on a cycle ergometer at 55% of max . After 5 minutes of exercise, the subjects ingested 5.5 mllkg body weight of a test solution: water (W), carbonated water (CW), and a low calorie sport drink in both a carbonated (C2C) and noncarbonated (2C) form. At the end of each ride, the stomach was emptied through gastric aspiration. The results indicate that carbonation has no effect on GE. However, the type of drink did have an effect on GE, as both 2C and C2C emptied from the stomach at a slower rate than either W or CW. Subjective ratings of gastrointestinal comfort were similar for both carbonated and noncarbonated forms, and at no time did the subjects report discomfort. The results were independent of the exercise challenge, as exercise intensity, heart rate, and ratings of perceived exertion did not differ between experimental trials. It is concluded that carbonation does not affect the GE characteristics of a drink taken during submaximal exercise, but the flavoring system of the low calorie beverage decreased the rate of GE by as much as 25% when compared to water.


2016 ◽  
Vol 41 (4) ◽  
pp. 405-410 ◽  
Author(s):  
Matthew F. Higgins ◽  
Akbar Shabir

This study examined whether expectancy of ergogenicity of a commonly used nutritional supplement (sodium bicarbonate; NaHCO3) influenced subsequent high-intensity cycling capacity. Eight recreationally active males (age, 21 ± 1 years; body mass, 75 ± 8 kg; height, 178 ± 4 cm; WPEAK = 205 ± 22 W) performed a graded incremental test to assess peak power output (WPEAK), one familiarisation trial and two experimental trials. Experimental trials consisted of cycling at 100% WPEAK to volitional exhaustion (TLIM) 60 min after ingesting either a placebo (PLA: 0.1 g·kg−1 sodium chloride (NaCl), 4 mL·kg−1 tap water, and 1 mL·kg−1 squash) or a sham placebo (SHAM: 0.1 g·kg−1 NaCl, 4 mL·kg−1 carbonated water, and 1 mL·kg−1 squash). SHAM aimed to replicate the previously reported symptoms of gut fullness (GF) and abdominal discomfort (AD) associated with NaHCO3 ingestion. Treatments were administered double blind and accompanied by written scripts designed to remain neutral (PLA) or induce expectancy of ergogenicity (SHAM). After SHAM mean TLIM increased by 9.5% compared to PLA (461 ± 148 s versus 421 ± 150 s; P = 0.048, d = 0.3). Ratings of GF and AD were mild but ∼1 unit higher post-ingestion for SHAM. After 3 min TLIM overall ratings of perceived exertion were 1.4 ± 1.3 units lower for SHAM compared to PLA (P = 0.020, d = 0.6). There were no differences between treatments for blood lactate, blood glucose, or heart rate. In summary, ergogenicity after NaHCO3 ingestion may be influenced by expectancy, which mediates perception of effort during subsequent exercise. The observed ergogenicity with SHAM did not affect our measures of cardiorespiratory physiology or metabolic flux.


2017 ◽  
Vol 42 (2) ◽  
pp. 166-172 ◽  
Author(s):  
Cristhian F. Montenegro ◽  
David A. Kwong ◽  
Zev A. Minow ◽  
Brian A. Davis ◽  
Christina F. Lozada ◽  
...  

We aimed to determine the effects of a betalain-rich concentrate (BRC) of beetroots, containing no sugars or nitrates, on exercise performance and recovery. Twenty-two (9 men and 13 women) triathletes (age, 38 ± 11 years) completed 2 double-blind, crossover, randomized trials (BRC and placebo) starting 7 days apart. Each trial was preceded by 6 days of supplementation with 100 mg·day−1 of BRC or placebo. On the 7th day of supplementation, exercise trials commenced 120 min after ingestion of 50 mg BRC or placebo and consisted of 40 min of cycling (75 ± 5% maximal oxygen consumption) followed by a 10-km running time trial (TT). Subjects returned 24 h later to complete a 5-km running TT to assess recovery. Ten-kilometer TT duration (49.5 ± 8.9 vs. 50.8 ± 10.3 min, p = 0.03) was faster with the BRC treatment. Despite running faster, average heart rate and ratings of perceived exertion were not different between treatments. Five-kilometer TT duration (23.2 ± 4.4 vs 23.9 ± 4.7 min, p = 0.003), 24 h after the 10-km TT, was faster in 17 of the 22 subjects with the BRC treatment. Creatine kinase, a muscle damage marker, increased less (40.5 ± 22.5 vs. 49.7 ± 21.5 U·L−1, p = 0.02) from baseline to after the 10-km TT and subjective fatigue increased less (–0.05 ± 6.1 vs. 3.23 ± 6.1, p = 0.05) from baseline to 24 h after the 10-km TT with BRC. In conclusion, BRC supplementation improved 10-km TT performance in competitive male and female triathletes. Improved 5-km TT performances 24 h after the 10-km TT and the attenuated increase of creatine kinase and fatigue suggest an increase in recovery while taking BRC.


Sports ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 162
Author(s):  
Raci Karayigit ◽  
Alireza Naderi ◽  
Bryan Saunders ◽  
Scott C. Forbes ◽  
Juan Del Coso ◽  
...  

Previous studies have investigated caffeine (CAF) and taurine (TAU) in isolation and combined during exercise in males. However, the potential synergistic effect during high-intensity exercise remains unknown in female athletes. Seventeen female team-sport athletes participated (age: 23.4 ± 2.1 years; height: 1.68 ± 0.05 m; body mass: 59.5 ± 2.2 kg). All participants were habitual caffeine consumers (340.1 ± 28.6 mg/day). A double-blind randomized crossover design was used. Participants completed four experimental trials: (i) CAF and TAU (6 mg/kg body mass of CAF + 1 g of TAU), (ii) CAF alone; (iii) TAU alone; and (iv) placebo (PLA). Supplements were ingested 60 min before a 30-s Wingate Anaerobic Test (WAnT). Heart rate and blood lactate (BL) were measured before and immediately after the WAnT; and ratings of perceived exertion (RPE) were recorded immediately after the WAnT. Peak power (PP) was significantly higher following co-ingestion of CAF+TAU compared to PLA (p = 0.03) and TAU (p = 0.03). Mean power (MP) was significantly higher following co-ingestion of CAF+TAU compared to PLA (p = 0.01). No other differences were found between conditions for PP and MP (p > 0.05). There were also no observed differences in fatigue index (FI), BL; heart rate; and RPE between conditions (p > 0.05). In conclusion, compared to PLA the combined ingestion of 6 mg/kg of CAF and 1 g of TAU improved both PP and MP in female athletes habituated to caffeine; however; CAF and TAU independently failed to augment WAnT performance.


2002 ◽  
Vol 94 (3) ◽  
pp. 723-731 ◽  
Author(s):  
Kristen M. Lagally ◽  
Kara I. Gallagher ◽  
Robert J. Robertson ◽  
Randall Gearhart ◽  
Fredric L. Goss

Ratings of perceived exertion (RPE) are commonly used to monitor the intensity of aerobic exercise. Whether ratings of perceived exertion can be used similarly during resistance exercise is unclear. To examine this question, perceived exertion was measured at 30% and 90% of the one-repetition maximum (1-RM), while holding work constant between intensities. Ratings for the active muscles and for the overall body were examined during both intensities. 10 male (age = 23.2 ± 3.6 yr.) and nine female (age = 21.8 ± 2.7 yr.) volunteers underwent a one-repetition maximum procedure for each of the following exercises; bench press, leg press, latissimus pull down, triceps press, biceps curl, shoulder press, and calf raise. All subjects then completed two experimental trials on separate days. The high-intensity trial consisted of one set of five repetitions at 90% of the one-repetition maximum. The low-intensity trial consisted of one set of 15 repetitions at 30% of the one-repetition maximum. Active muscle and overall body ratings of perceived exertion were obtained immediately at termination of each of the seven exercises at both intensities. A two-factor (RPE x Intensity) repeated-measures analysis of variance was performed separately for each exercise. Both active muscle and overall body ratings of perceived exertion were higher ( p<.01) for the high-intensity trial than for the low intensity trial. Active muscle ratings were higher ( p<.01) than overall body ratings for all exercises. Ratings of perceived exertion during resistance exercise are related to intensity of the resistance exercise (percentage of the one-repetition maximum). This information suggests that ratings of perceived exertion can provide information regarding the intensity of resistance exercise. Furthermore, sensations of exertion in the active muscles during resistance exercise are greater than sensations for the overall body.


Sign in / Sign up

Export Citation Format

Share Document