scholarly journals Genomic Sequencing and Comparison of Sacbrood Viruses from Apis cerana and Apis mellifera in Taiwan

Pathogens ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Ju-Chun Chang ◽  
Zih-Ting Chang ◽  
Chong-Yu Ko ◽  
Yue-Wen Chen ◽  
Yu-Shin Nai

Sacbrood virus (SBV) was the first identified bee virus and shown to cause serious epizootic infections in the population of Apis cerana in Taiwan in 2015. Herein, the whole genome sequences of SBVs in A. cerana and A. mellifera were decoded and designated AcSBV-TW and AmSBV-TW, respectively. The whole genomes of AcSBV-TW and AmSBV-TW were 8776 and 8885 bp, respectively, and shared 90% identity. Each viral genome encoded a polyprotein, which consisted of 2841 aa in AcSBV-TW and 2859 aa in AmSBV-TW, and these sequences shared 95% identity. Compared to 54 other SBVs, the structural protein and protease regions showed high variation, while the helicase was the most highly conserved region among SBVs. Moreover, a 17-amino-acid deletion was found in viral protein 1 (VP1) region of AcSBV-TW compared to AmSBV-TW. The phylogenetic analysis based on the polyprotein sequences and partial VP1 region indicated that AcSBV-TW was grouped into the SBV clade with the AC-genotype (17-aa deletion) and was closely related to AmSBV-SDLY and CSBV-FZ, while AmSBV-TW was grouped into the AM-genotype clade but branched independently from other AmSBVs, indicating that the divergent genomic characteristics of AmSBV-TW might be a consequence of geographic distance driving evolution, and AcSBV-TW was closely related to CSBV-FZ, which originated from China. This 17-amino-acid deletion could be found in either AcSBV or AmSBV in Taiwan, indicating cross-infection between the two viruses. Our data revealed geographic and host specificities between SBVs. The amino acid difference in the VP1 region might serve as a molecular marker for describing SBV cross-infection.

Amino Acids ◽  
2014 ◽  
Vol 47 (1) ◽  
pp. 147-152
Author(s):  
Giovanni Minervini ◽  
Alessandro Masiero ◽  
Emilio Potenza ◽  
Silvio C. E. Tosatto

2004 ◽  
Vol 85 (10) ◽  
pp. 3001-3006 ◽  
Author(s):  
Naoko Miyajima ◽  
Makoto Takeda ◽  
Masato Tashiro ◽  
Koji Hashimoto ◽  
Yusuke Yanagi ◽  
...  

Two nucleotide differences in the P/C/V and M genes between B95a cell- and Vero cell-isolated wild-type measles viruses (MV) have previously been found from the same patient. The nucleotide difference in the P/C/V gene resulted in an amino acid difference (M175I) in the P and V proteins and a 19 aa deletion in the C protein. The nucleotide difference in the M gene resulted in an amino acid difference (P64H) in the M protein. To verify this result and to examine further whether the amino acid difference or truncation is important for MV cell tropism, recombinant MV strains containing one of the two nucleotide substitutions, or both, were generated. It was found that the P64H substitution in the M protein was important for efficient virus growth and dissemination in Vero cells and that the M175I substitution in the P and V protein or truncation of the C protein was required for optimal growth.


2014 ◽  
Vol 18 (12) ◽  
pp. 1763-1770 ◽  
Author(s):  
Bernard Riss ◽  
Arnaud Grandeury ◽  
Thorsten Gut ◽  
Manuela Seeger-Weibel ◽  
Christian Zuercher ◽  
...  

2020 ◽  
Author(s):  
Jucai Wang ◽  
Yunchao Liu ◽  
Yumei Chen ◽  
Teng Zhang ◽  
Aiping Wang ◽  
...  

Abstract Background: Porcine parvovirus (PPV) is a major cause of reproductive failure in swine, and has caused huge losses throughout the world. Viral protein 2 (VP2) of PPV is a major structural protein that can self-assemble into virus-like particles (VLP) with hemagglutination (HA) activity. In order to identify the essential residues involved in the mechanism of capsid assembly and to further understand the function of HA, we analyzed a series of deletion mutants and site-directed mutations within the N-terminal of VP2 in the Escherichia coli (E. coli) system. Results: Our results showed that deletion of first 47 amino acids from the N-terminal of VP2 protein did not affect capsid assembly, and further truncation to residue 48 Asparagine (Asn, N) caused detrimental effects. Site-directed mutagenesis experiments demonstrated that residue 47Asn reduced the assembly efficiency of PPV VLP, while residue 48Asn destroyed the stability, hemagglutination, and self-assembly characteristics of the PPV VP2 protein. These findings indicated that the residues 47Asn and 48Asn are important amino acid sites to capsid assembly and HA activity. Results from Native PAGE inferred that macromolecular polymers were critical intermediates of the VP2 protein during the capsid assembly process. Site-directed mutation at 48Asn did not affect the association of monomers to form into oligomers, but destroyed the ability of oligomers to assemble into macromolecular particles, influencing both capsid assembly and HA activity. Conclusions: These results demonstrated that PPV capsid assembly is a complex process that is regulated by amino acids 47Asn and 48Asn, which are located at the N-terminal of VP2 and closely related to the association of macromolecular particles. Our findings provide valuable information on the mechanisms of PPV capsid assembly and the possibility of chimeric VLP vaccine development by replacing as much as 47 amino acids at the N-terminal of VP2 protein.


Sign in / Sign up

Export Citation Format

Share Document