scholarly journals Role of Apoptotic Cell Clearance in Pneumonia and Inflammatory Lung Disease

Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 134
Author(s):  
David Jiao Zheng ◽  
Maria Abou Taka ◽  
Bryan Heit

Pneumonia and inflammatory diseases of the pulmonary system such as chronic obstructive pulmonary disease and asthma continue to cause significant morbidity and mortality globally. While the etiology of these diseases is highly different, they share a number of similarities in the underlying inflammatory processes driving disease pathology. Multiple recent studies have identified failures in efferocytosis—the phagocytic clearance of apoptotic cells—as a common driver of inflammation and tissue destruction in these diseases. Effective efferocytosis has been shown to be important for resolving inflammatory diseases of the lung and the subsequent restoration of normal lung function, while many pneumonia-causing pathogens manipulate the efferocytic system to enhance their growth and avoid immunity. Moreover, some treatments used to manage these patients, such as inhaled corticosteroids for chronic obstructive pulmonary disease and the prevalent use of statins for cardiovascular disease, have been found to beneficially alter efferocytic activity in these patients. In this review, we provide an overview of the efferocytic process and its role in the pathophysiology and resolution of pneumonia and other inflammatory diseases of the lungs, and discuss the utility of existing and emerging therapies for modulating efferocytosis as potential treatments for these diseases.

BMJ ◽  
2012 ◽  
Vol 345 (oct25 1) ◽  
pp. e6843-e6843 ◽  
Author(s):  
H. Y. Park ◽  
S. F. P. Man ◽  
D. D. Sin

Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 53
Author(s):  
Anjali Trivedi ◽  
Meraj A. Khan ◽  
Geetanjali Bade ◽  
Anjana Talwar

Morbidity, mortality and economic burden caused by chronic obstructive pulmonary disease (COPD) is a significant global concern. Surprisingly, COPD is already the third leading cause of death worldwide, something that WHO had not predicted to occur until 2030. It is characterized by persistent respiratory symptoms and airway limitation due to airway and/or alveolar abnormalities usually caused by significant exposure to noxious particles of gases. Neutrophil is one of the key infiltrated innate immune cells in the lung during the pathogenesis of COPD. Neutrophils during pathogenic attack or injury decide to undergo for a suicidal death by releasing decondensed chromatin entangled with antimicrobial peptides to trap and ensnare pathogens. Casting neutrophil extracellular traps (NETs) has been widely demonstrated to be an effective mechanism against invading microorganisms thus controlling overwhelming infections. However, aberrant and massive NETs formation has been reported in several pulmonary diseases, including chronic obstructive pulmonary disease. Moreover, NETs can directly induce epithelial and endothelial cell death resulting in impairing pulmonary function and accelerating the progression of the disease. Therefore, understanding the regulatory mechanism of NET formation is the need of the hour in order to use NETs for beneficial purpose and controlling their involvement in disease exacerbation. For example, DNA neutralization of NET proteins using protease inhibitors and disintegration with recombinant human DNase would be helpful in controlling excess NETs. Targeting CXC chemokine receptor 2 (CXCR2) would also reduce neutrophilic inflammation, mucus production and neutrophil-proteinase mediated tissue destruction in lung. In this review, we discuss the interplay of NETs in the development and pathophysiology of COPD and how these NETs associated therapies could be leveraged to disrupt NETopathic inflammation as observed in COPD, for better management of the disease.


2021 ◽  
Vol 31 (1) ◽  
pp. 75-87
Author(s):  
I. V. Leshchenko ◽  
A. S. Meshcheryakova

Chronic obstructive pulmonary disease (COPD) is the leading cause of death in the structure of respiratory diseases. The problem of rational pharmacotherapy of COPD have attracted attention of the medical scientific society for many years. The understanding of the pathogenesis of the disease has deepened and approaches to the therapy have changed. Some COPD patients need regular fixed-combination therapy: long-acting bronchodilators (LABD) and inhaled corticosteroids (ICS) in order to prevent exacerbations and reduce the severity of symptoms of the disease. Blood eosinophils count is one of criteria for choosing regular therapy. The appearance of fixed triple combinations of ICS/LABD increased the effectiveness of COPD therapy, and a new delivery device for fixed combination of budesonide/formoterol makes it possible to use ICS successfully in the most severe patients.


BMJ Open ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. e037509
Author(s):  
Kimberley Sonnex ◽  
Hanna Alleemudder ◽  
Roger Knaggs

ObjectivesInhaled corticosteroids (ICS) reduce exacerbation rates and the decline in lung function in people with chronic obstructive pulmonary disease (COPD). There is evidence that smoking causes ‘steroid resistance’ and thus reduces the effect of ICS. This systematic review aimed to investigate the effect of smoking on efficacy of ICS in COPD in terms of lung function and exacerbation rates.DesignSystematic review.Data sourcesAn electronic database search of PubMed, Ovid MEDLINE, Ovid Embase and Cochrane Library (January 2000 to January 2020).Eligibility criteriaFully published randomised controlled trials (RCTs), in the English language, evaluating the use of ICS in COPD adults that stratified the participants by smoking status. Trials that included participants with asthma, lung cancer and pneumonia were excluded. The primary outcome measures were changes in lung function and yearly exacerbation rates.Data extraction and synthesisTwo independent reviewers extracted data and assessed risk of bias using the Cochrane Collaboration’s tool.ResultsSeven studies were identified. Four trials (17 892 participants) recorded change in forced expiratory volume in one second (FEV1) from baseline to up to 30 months after starting treatment. Heavier smokers (>36 pack years) using ICS had a greater decline in FEV1that ranged from −22 mL to −75 mL in comparison to lighter smokers. Smokers using ICS had mixed results in FEV1change: −8 mL to +77 mL in comparison to ex-smokers. Four trials (21 270 participants) recorded difference in COPD exacerbation rates at 52 weeks. The rate ratios favoured more exacerbations in ICS users who were current or heavier smokers than those who were ex-smokers or lighter smokers (0.81 to 0.99 vs 0.92 to 1.29).ConclusionsIn COPD, heavier or current smokers do not gain the same benefit from ICS use on lung function and exacerbation rates as lighter or ex-smokers do, however effects may not be clinically important.PROSPERO registration numberCRD42019121833


Sign in / Sign up

Export Citation Format

Share Document