scholarly journals Campylocarpon fasciculare (Nectriaceae, Sordariomycetes); Novel Emergence of Black-Foot Causing Pathogen on Young Grapevines in China

Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1555
Author(s):  
Pranami D. Abeywickrama ◽  
Wei Zhang ◽  
Xinghong Li ◽  
Ruvishika S. Jayawardena ◽  
Kevin D. Hyde ◽  
...  

The black-foot disease of grapevine is one of the most destructive diseases in viticulture and it is caused by a complex of soil-borne fungi. This study aimed to identify the species associated with black-foot disease in young grapevines in vineyards of China. Fungal isolates were identified as Campylocarpon fasciculare, based on both morphological and multi-locus phylogenetic analysis of ITS, tef1–α and ß-tubulin sequence data. For the first time in China, we report Campylocarpon fasciculare associated with symptomatic young grapevines. Koch’s postulates were performed on Vitis vinifera cv. Summer Black (SB) in a greenhouse and to confirm the pathogenicity on grapevines. This work improves the knowledge of black-foot disease in Chinese vineyards and will be helpful to growers in their decisions regarding vinicultural practices, planting and disease management.

Plant Disease ◽  
2020 ◽  
Vol 104 (1) ◽  
pp. 94-104 ◽  
Author(s):  
Carmen Berlanas ◽  
Sonia Ojeda ◽  
Beatriz López-Manzanares ◽  
Marcos Andrés-Sodupe ◽  
Rebeca Bujanda ◽  
...  

In this study, 3,426 grafted grapevines ready to be planted from 15 grapevine nursery fields in Northern Spain were inspected from 2016 to 2018 for black-foot causing pathogens. In all, 1,427 isolates of black-foot pathogens were collected from the asymptomatic inner tissues of surface sterilized secondary roots and characterized based on morphological features and DNA sequence data of the nuclear ribosomal DNA-internal transcribed spacer region, histone H3, translation elongation factor 1-alpha and β-tubulin genes. Eleven species belonging to the genera Dactylonectria, Ilyonectria, Neonectria, and Thelonectria were identified, including Dactylonectria alcacerensis, D. macrodidyma, D. novozelandica, D. pauciseptata, D. torresensis, Ilyonectria liriodendri, I. pseudodestructans, I. robusta, Neonectria quercicola, Neonectria sp. 1, and Thelonectria olida. In addition, two species are newly described, namely D. riojana and I. vivaria. Twenty-four isolates representing 13 black-foot species were inoculated onto grapevine seedlings cultivar ‘Tempranillo’. The pathogenicity tests detected diversity in virulence among fungal species and between isolates within each species. The most virulent species was D. novozelandica isolate BV-0760, followed by D. alcacerensis isolate BV-1240 and I. vivaria sp. nov. isolate BV-2305. This study improves our knowledge on the etiology and virulence of black-foot disease pathogens, and opens up new perspectives in the study of the endophytic phase of these pathogens in grapevines.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1277-1277 ◽  
Author(s):  
D. S. Akgül ◽  
N. G. Savaş ◽  
S. Önder ◽  
S. Özben ◽  
S. Kaymak

Soil-borne fungal diseases have become an important problem in grapevine nurseries of the Aegean region (western Turkey) in recent years. Reduced vigor, black vascular streaking in basal ends, blackish-sunken necrotic root lesions, and young vine death were observed in 15 grapevine nurseries of Manisa city in May 2011 and 2012. To determine the causal agents, symptomatic young grapevine (Vitis vinifera cv. Sultana 7) plants (grafted on 1103 Paulsen) were collected from nurseries (8 to 10 plants from each). Symptomatic basal end tissues were surface disinfested with 95% ethanol and flame sterilized. The internal tissues were plated onto potato dextrose agar amended with tetracycline (0.01%). Campylocarpon-like fungi were isolated (with 37.9% isolation frequency) from only one nursery (corresponding to 6.7% of all surveyed nurseries). Fungal colonies were incubated for 21 days in the dark to induce sporulation. Fungal colonies produced cottony aerial mycelium and turned chocolate-brown to dark brown on PDA. Abundant macroconidia were observed at branched conidiophores on long and cylindrical phialides. Microconidia were not observed. Macroconidia were generally 2 to 4 septate, cylindrical and slightly curved, with the following dimensions: 2 septate: 33.5 to 40.7 × 6.1 to 7.6 μm (mean: 35.9 × 6.8 μm), 3 septate: 36.2 to 43.4 × 6.6 to 8.3 μm (mean: 37.3 × 7.6 μm), and 4 septate: 48.9 to 53.5 × 7.6 to 8.3 μm (mean: 50.7 × 8.0 μm). Fifty macroconidia were measured. Morphologically, the isolates resembled the published description of Campylocarpon fasciculare Schroers, Halleen & Crous (2,4). For molecular identification, fungal DNA was extracted from mycelium and ribosomal DNA fragments (ITS1, 5.8S ITS2 rDNA), β-tubulin, and histone H3 genes, amplified with ITS 4-5, Bt 2a-2b, and H3 1a-1b primers (3,5), and sequenced. Sequences were compared with those deposited in GenBank. The isolate (MBAi45CL) showed 99% similarity with Campylocarpon fasciculare isolates AY677303 (ITS), AY377225 (β-tubulin), and JF735502 (histone H3). The DNA sequences were deposited into GenBank under accessions KJ573392, KJ573393, and KJ573394 for ITS, β-tubulin, and Histone H3 genes, respectively. To fulfill Koch's postulates, pathogenicity tests were conducted under greenhouse conditions on own-rooted grapevines (Vitis vinifera) cv. Sultana 7. Plants were removed from the rooting bench and the roots were slightly trimmed and submerged in a 107 ml–1 conidial suspension of the isolate for 60 min (5). After inoculation, the rooted cuttings were planted in 1-liter bags containing a mixture of soil, peat, and sand (2:1:1, v/v/v), and maintained in the greenhouse (24°C. 16/8-h day/night, 75% RH). Ten plants were inoculated with the isolate and five plants were submerged in sterile distilled water (control). After 4 months, young vines were examined for vascular discoloration, reduced root biomass, blackish lesions, and recovery of fungal isolates. The experiment was repeated twice. Blackish-brown discoloration of xylem vessels and necrosis in the basal ends was visible in the inoculated plants but not in the control plants. The pathogen was successfully re-isolated from 69.1% of the inoculated plants. This report is important for the new studies aiming at black foot disease control in Turkey viticulture. References: (1) A. Cabral et al. Phytopathol. Mediterr. 51:340, 2012. (2) P. Chaverri et al. Stud. Mycol. 68:67, 2011. (3) N. L. Glass and G. C. Donaldson. Appl. Environ. Microbiol. 61:1323, 1995. (4) F. Halleen et al. Stud. Mycol. 50:431, 2004. (5) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Diversity ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 218 ◽  
Author(s):  
Jessica Sánchez ◽  
Paola Iturralde ◽  
Alma Koch ◽  
Cristina Tello ◽  
Dennis Martinez ◽  
...  

Andean blackberry (Rubus glaucus Benth) plants from the provinces of Tungurahua and Bolivar (Ecuador) started showing symptoms of black foot disease since 2010. Wilted plants were sampled in both provinces from 2014 to 2017, and fungal isolates were obtained from tissues surrounding necrotic lesions in the cortex of the roots and crown. Based on morphological characteristics and DNA sequencing of histone 3 and the translation elongation factor 1α gene, isolates were identified as one of seven species, Ilyonectria vredehoekensis, Ilyonectria robusta, Ilyonectria venezuelensis, Ilyonectria europaea, Dactylonectria torresensis, or Dactylonectria novozelandica. Pathogenicity tests with isolates from each species, excluding I. europaea and D. novozelandica whose isolates were lost due to contamination, confirmed that the four species tested can produce black foot disease symptoms in Andean blackberry. This is the first report of Dactylonectria and Ilyonectria species causing black foot disease of Andean blackberry.


1998 ◽  
Vol 8 (2) ◽  
pp. 187 ◽  
Author(s):  
H. Jenny Su ◽  
Yueliang Leon Guo ◽  
Ming-Derg Lai ◽  
Jin-ding Huang ◽  
Yawen Cheng ◽  
...  

2009 ◽  
Vol 157 (10) ◽  
pp. 642-645 ◽  
Author(s):  
Hamid Mohammadi ◽  
Sandra Alaniz ◽  
Zia Banihashemi ◽  
Josep Armengol

Plant Disease ◽  
2006 ◽  
Vol 90 (12) ◽  
pp. 1481-1484 ◽  
Author(s):  
Elsa Petit ◽  
Walter Douglas Gubler

We examined the influence of an arbuscular-mycorrhizal fungus, Glomus intraradices (INVAM CA 501), on black foot disease caused by the fungus Cylindrocarpon macrodidymum on Vitis rupestris cv. St. George under controlled conditions. Mycorrhizal or nonmycorrhizal grape rootings were inoculated with the pathogen. Eight months following inoculation with the pathogen, we evaluated disease severity, vine growth, and mycorrhizal colonization. Mycorrhizal plants developed significantly less leaf and root symptoms than nonmycorrhizal plants (P = 0.04 and P < 0.0001, respectively). Only nonmycorrhizal grape rootings inoculated with the pathogen had significantly less dry root and leaf weights compared with the noninoculated control (P = 0.0021 and P = 0.0017, respectively). Mycorrhizal colonization was high (48.3% for the noninfected control and 54.5% for plants infected with C. macrodidymum) and not significantly affected by inoculation with C. macrodidymum (P = 0.2256). Thus, V. rupestris preinoculated with G. intraradices were less susceptible to black foot disease than nonmycorrhizal plants. Results from this study suggest that preplant applications of G. intraradices may help prevent black foot disease in the nursery and in the vineyard.


Sign in / Sign up

Export Citation Format

Share Document