precursor peptide
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 38)

H-INDEX

27
(FIVE YEARS 5)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jakob H. Viel ◽  
Amanda Y. van Tilburg ◽  
Oscar P. Kuipers

The ribosomally synthesized and post-translationally modified peptide mersacidin is a class II lanthipeptide with good activity against Gram-positive bacteria. The intramolecular lanthionine rings, that give mersacidin its stability and antimicrobial activity, are specific structures with potential applications in synthetic biology. To add the mersacidin modification enzymes to the synthetic biology toolbox, a heterologous expression system for mersacidin in Escherichia coli has recently been developed. While this system was able to produce fully modified mersacidin precursor peptide that could be activated by Bacillus amyloliquefaciens supernatant and showed that mersacidin was activated in an additional proteolytic step after transportation out of the cell, it lacked a mechanism for clean and straightforward leader processing. Here, the protease responsible for activating mersacidin was identified and heterologously produced in E. coli, improving the previously reported heterologous expression system. By screening multiple proteases, the stringency of proteolytic activity directly next to a very small lanthionine ring is demonstrated, and the full two-step proteolytic activation of mersacidin was elucidated. Additionally, the effect of partial leader processing on diffusion and antimicrobial activity is assessed, shedding light on the function of two-step leader processing.


Author(s):  
Mengjiao Wang ◽  
Christopher D. Fage ◽  
Yile He ◽  
Jinhui Mi ◽  
Yang Yang ◽  
...  

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of natural products that exhibit a range of structures and bioactivities. Initially assembled from the twenty proteinogenic amino acids in a ribosome-dependent manner, RiPPs assume their peculiar bioactive structures through various post-translational modifications. The essential modifications representative of each subfamily of RiPP are performed on a precursor peptide by the so-called processing enzymes; however, various tailoring enzymes can also embellish the precursor peptide or processed peptide with additional functional groups. Lasso peptides are an interesting subfamily of RiPPs characterized by their unique lariat knot-like structure, wherein the C-terminal tail is inserted through a macrolactam ring fused by an isopeptide bond between the N-terminal amino group and an acidic side chain. Until recently, relatively few lasso peptides were found to be tailored with extra functional groups. Nevertheless, the development of new routes to diversify lasso peptides and thus introduce novel or enhanced biological, medicinally relevant, or catalytic properties is appealing. In this review, we highlight several strategies through which lasso peptides have been successfully modified and provide a brief overview of the latest findings on the tailoring of these peptides. We also propose future directions for lasso peptide tailoring as well as potential applications for these peptides in hybrid catalyst design.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fredarla S. Miller ◽  
Kathryn K. Crone ◽  
Matthew R. Jensen ◽  
Sudipta Shaw ◽  
William R. Harcombe ◽  
...  

AbstractPeptide backbone α-N-methylations change the physicochemical properties of amide bonds to provide structural constraints and other favorable characteristics including biological membrane permeability to peptides. Borosin natural product pathways are the only known ribosomally encoded and posttranslationally modified peptides (RiPPs) pathways to incorporate backbone α-N-methylations on translated peptides. Here we report the discovery of type IV borosin natural product pathways (termed ‘split borosins’), featuring an iteratively acting α-N-methyltransferase and separate precursor peptide substrate from the metal-respiring bacterium Shewanella oneidensis. A series of enzyme-precursor complexes reveal multiple conformational states for both α-N-methyltransferase and substrate. Along with mutational and kinetic analyses, our results give rare context into potential strategies for iterative maturation of RiPPs.


Author(s):  
Ross Vermeulen ◽  
Shelly Deane ◽  
Leon Dicks ◽  
Johann Rohwer ◽  
Anton Du Preez van Staden

Plantaricin 423 is produced by Lactobacillus plantarum 423 using the pla biosynthetic operon located on the 8188 bp plasmid, pPLA4. As with many class IIa bacteriocin operons, the pla operon encodes biosynthetic genes ( plaA : precursor peptide, plaB : immunity, plaC : accessory and plaD : ABC transporter) but does not encode local regulatory genes. Little is known about the regulatory mechanisms involved in the expression of the apparently regulationless class IIa bacteriocins such as plantaricin 423. In this study, phylogenetic analysis of class IIa immunity proteins indicated that at least three distinct clades exist, which were then used to subgroup the class IIa operons. It became evident that the absence of classical quorum sensing genes on mobile bacteriocin encoding elements is a predisposition of the subgroup which includes plantaricin 423, pediocin AcH/PA-1, divercin V41, enterocin A, leucocin-A and -B, mesentericin Y105 and sakacin G. Further analysis of the subgroup suggested that the regulation of these class IIa operons may be linked to transition metal homeostasis in the host. By using a fluorescent promoter-reporter system in Lactobacillus plantarum 423, transcriptional regulation of plantaricin 423 was shown to be upregulated in response to manganese privation. IMPORTANCE Lactic acid bacteria hold huge industrial application and economic value, especially bacteriocinogenic strains which further aids in the exclusion of specific foodborne pathogens. Since bacteriocinogenic strains are sought after it is equally important to understand the mechanism of bacteriocin regulation. This is currently an understudied aspect of class IIa operons. Our research suggests the existence of a previously undescribed mode of class IIa bacteriocin regulation, whereby bacteriocin expression is linked to management of the producer’s transition metal homeostasis. This delocalized metalloregulatory model may fundamentally affect the selection of culture conditions for bacteriocin expression and change our understanding of class IIa bacteriocin gene transfer dynamics in a given microbiome.


2021 ◽  
Author(s):  
Vernie Aguda ◽  
Helen Chasiotis ◽  
Indira Riadi ◽  
Tod Rogers Thiele

Striatal neurons within the basal ganglia play a central role in vertebrate action selection; however, their location in larval zebrafish is not well defined. We assayed for conserved striatal markers in the zebrafish subpallium using fluorescent in situ hybridization (FISH) and immunohistochemistry. Whole mount FISH revealed an inhibitory neuronal cluster rostral to the anterior commissure that expresses tac1, the gene that encodes the precursor peptide for substance P. This molecular profile is shared by mammalian striatal direct pathway neurons. A second partially overlapping population of inhibitory neurons was identified that expresses penka, the gene that encodes the precursor peptide for enkephalin. This molecular profile is shared by striatal indirect pathway neurons. Immunostaining for substance P and enkephalin confirmed the presence of these peptides in the subpallium as well as the presence of dopaminergic innervation. The tac1 and penka populations were both found to increase linearly across larval stages. Together, these findings support the existence of a striatal homologue in larval zebrafish that grows to match the development and increasing behavioural complexity of the organism.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yunliang Chen ◽  
Jinxiu Wang ◽  
Guoquan Li ◽  
Yunpeng Yang ◽  
Wei Ding

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing class of natural products that benefited from genome sequencing technology in the past two decades. RiPPs are widely distributed in nature and show diverse chemical structures and rich biological activities. Despite the various structural characteristic of RiPPs, they follow a common biosynthetic logic: a precursor peptide containing an N-terminal leader peptide and a C-terminal core peptide; in some cases,a follower peptide is after the core peptide. The precursor peptide undergoes a series of modification, transport, and cleavage steps to form a mature natural product with specific activities. Sactipeptides (Sulfur-to-alpha carbon thioether cross-linked peptides) belong to RiPPs that show various biological activities such as antibacterial, spermicidal and hemolytic properties. Their common hallmark is an intramolecular thioether bond that crosslinks the sulfur atom of a cysteine residue to the α-carbon of an acceptor amino acid, which is catalyzed by a rSAM enzyme. This review summarizes recent achievements concerning the discovery, distribution, structural elucidation, biosynthesis and application prospects of sactipeptides.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Claudia Gregoriano ◽  
Dominik Damm ◽  
Alexander Kutz ◽  
Daniel Koch ◽  
Selina Wolfisberg ◽  
...  

Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) has been linked to thrombotic complications and endothelial dysfunction. We assessed the prognostic implications of endothelial activation through measurement of endothelin-I precursor peptide (proET-1), the stable precursor protein of Endothelin-1, in a well-defined cohort of patients hospitalized with COVID-19. Methods We measured proET-1 in 74 consecutively admitted adult patients with confirmed COVID-19 and compared its prognostic accuracy to that of patients with community-acquired pneumonia (n = 876) and viral bronchitis (n = 371) from a previous study by means of logistic regression analysis. The primary endpoint was all-cause 30-day mortality. Results Overall, median admission proET-1 levels were lower in COVID-19 patients compared to those with pneumonia and exacerbated bronchitis, respectively (57.0 pmol/l vs. 113.0 pmol/l vs. 96.0 pmol/l, p < 0.01). Although COVID-19 non-survivors had 1.5-fold higher admission proET-1 levels compared to survivors (81.8 pmol/l [IQR: 76 to 118] vs. 53.6 [IQR: 37 to 69]), no significant association of proET-1 levels and mortality was found in a regression model adjusted for age, gender, creatinine level, diastolic blood pressure as well as cancer and coronary artery disease (adjusted OR 0.1, 95% CI 0.0009 to 14.7). In patients with pneumonia (adjusted OR 25.4, 95% CI 5.1 to 127.4) and exacerbated bronchitis (adjusted OR 120.1, 95% CI 1.9 to 7499) we found significant associations of proET-1 and mortality. Conclusions Compared to other types of pulmonary infection, COVID-19 shows only a mild activation of the endothelium as assessed through measurement of proET-1. Therefore, the high mortality associated with COVID-19 may not be attributed to endothelial dysfunction by the surrogate marker proET-1.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jessie James Limlingan Malit ◽  
Chuanhai Wu ◽  
Ling-Li Liu ◽  
Pei-Yuan Qian

Thioamidated ribosomally synthesized and post-translationally modified peptides (RiPPs) are recently characterized natural products with wide range of potent bioactivities, such as antibiotic, antiproliferative, and cytotoxic activities. These peptides are distinguished by the presence of thioamide bonds in the peptide backbone catalyzed by the YcaO-TfuA protein pair with its genes adjacent to each other. Genome mining has facilitated an in silico approach to identify biosynthesis gene clusters (BGCs) responsible for thioamidated RiPP production. In this work, publicly available genomic data was used to detect and illustrate the diversity of putative BGCs encoding for thioamidated RiPPs. AntiSMASH and RiPPER analysis identified 613 unique TfuA-related gene cluster families (GCFs) and 797 precursor peptide families, even on phyla where the presence of these clusters have not been previously described. Several additional biosynthesis genes are colocalized with the detected BGCs, suggesting an array of possible chemical modifications. This study shows that thioamidated RiPPs occupy a widely unexplored chemical landscape.


2021 ◽  
Author(s):  
Inseok Song ◽  
Younghyeon Kim ◽  
Jaeseung Yu ◽  
Su Yong Go ◽  
Hong Geun Lee ◽  
...  

AbstractGraspetides, also known as omega-ester-containing peptides (OEPs), are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) bearing side-to-side macrolactone or macrolactam linkages. Here we present molecular details of the precursor recognition of the macrocyclase enzyme PsnB in the biosynthesis of plesiocin, a Group 2 graspetide. Biochemical analysis revealed that, in contrast to other RiPPs, the core region of the plesiocin precursor peptide noticeably enhanced the enzyme-precursor interaction via the conserved glutamates. We obtained four crystal structures of symmetric or asymmetric PsnB dimers including those with a bound core peptide and a nucleotide, and suggest that the highly conserved Arg213 at the enzyme active site specifically recognizes a ring-forming acidic residue and escorts it to ATP for phosphorylation. Collectively, this study provides insights into the mechanism underlying substrate recognition in the graspetide biosynthesis, and lays a foundation for engineering new variants.


Sign in / Sign up

Export Citation Format

Share Document