capillary liquid
Recently Published Documents


TOTAL DOCUMENTS

721
(FIVE YEARS 49)

H-INDEX

60
(FIVE YEARS 6)

2021 ◽  
Vol 50 (11) ◽  
pp. 3241-3250
Author(s):  
Roza Linda Roza Linda ◽  
Abdullah Abdullah ◽  
Mohamad Rafi Mohamad Rafi ◽  
Aster Rahayu Aster Rahayu ◽  
Lee Wah Lim ◽  
...  

Poly(ethylene oxide) (PEO) bonded stationary phase has been synthesized by a single and simple step reaction. Poly(ethylene glycol monomethyl ether p-toluene sulfonate) (tosylated-PEO, molecular weight 900, n ≈ 18) was chemically bonded to 3-aminopropyl silica (TSKgel NH2-60, 5 µm particle size, and 60 Å mean pore diameter). The prepared stationary phase was able to separate polar compounds such as phenolics and nucleobases in capillary liquid chromatography. The retention and separation of phenolics and nucleobases could be achieved under isocratic elution condition. Nucleobases such as thymine, adenine, uracil, uridine, cytidine and toluene and phenolics (phenol, pyrocatechol, pyrogallol) were baseline separated in less than 6 min using 98% acetonitrile and less than 7 minutes using 80% acetonitrile, respectively. We demonstrated that the retention of nucleobases as analyte decreased with decreasing eluent concentration. The retention of these polar compounds was believed to be based on dipole-dipole and/or hydrogen-bonding interactions.


2021 ◽  
Vol 1657 ◽  
pp. 462553
Author(s):  
Mohamed Adel Ahmed ◽  
Bren Mark Felisilda ◽  
Alain Wuethrich ◽  
Joselito P. Quirino

Author(s):  
Michelle Pham ◽  
Samuel W. Foster ◽  
Sangeeta Kurre ◽  
Rebecca A. Hunter ◽  
James P. Grinias

2021 ◽  
Vol 14 (6) ◽  
pp. 580
Author(s):  
Henry Daniel Ponce-Rodríguez ◽  
Jorge Verdú-Andrés ◽  
Pilar Campíns-Falcó ◽  
Rosa Herráez-Hernández

Dietary supplements of botanical origin are increasingly consumed due to their content of plant constituents with potential benefits on health and wellness. Among those constituents, terpenes are gaining attention because of their diverse biological activities (anti-inflammatory, antibacterial, geroprotective, and others). While most of the existing analytical methods have focused on establishing the terpenic fingerprint of some plants, typically by gas chromatography, methods capable of quantifying representative terpenes in herbal preparations and dietary supplements with combined high sensitivity and precision, simplicity, and high throughput are still necessary. In this study, we have explored the utility of capillary liquid chromatography (CapLC) with diode array detection (DAD) for the determination of different terpenes, namely limonene, linalool, farnesene, α-pinene, and myrcene. An innovative method is proposed that can be applied to quantify the targets at concentration levels as low as 0.006 mg per gram of sample with satisfactory precision, and a total analysis time <30 min per sample. The reliability of the proposed method has been tested by analyzing different dietary supplements of botanical origin, namely three green coffee extract-based products, two fat burnings containing Citrus aurantium (bitter orange), and an herbal preparation containing lime and leaves of orange trees.


SPE Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Weibing Tian ◽  
Keliu Wu ◽  
Zhangxin Chen ◽  
Lingbin Lai ◽  
Yanling Gao ◽  
...  

Summary Imbibition is one of the most common physical phenomena in nature, and it plays an important role in enhanced oil recovery, hydrology, and environmental engineering. The imbibition in a capillary is one of the fluid transports in porous media, and the effect of a dynamic contact angle that changes with the imbibition rate on liquid-liquid imbibition is not clear. In this paper, the molecular kinetic theory (MKT) is used to study the effect of a dynamic contact angle on spontaneous capillary-liquid-liquid imbibition at a micrometer scale. The results show that: Using a scaling time, the effects of various forces in different imbibition systems can be compared, the influence of a dynamic contact angle on imbibition can be characterized by a frictional effect of the three-phase contact line, and the proposed model considering the effect of a dynamic contact angle is better than the model neglecting the effect of a dynamic contact angle. As the displacing phase viscosity increases, the influence of a dynamic contact angle on imbibition strengthens, which is attributed to a decrease in the viscous effect and an increase in the frictional effect during the imbibition process; as the displaced phase viscosity increases, the influence of a dynamic contact angle on imbibition weakens, which is attributed to an increase in the viscous effect and a decrease in the frictional effect during the imbibition process. As the interfacial tension increases, the frictional effect increases, with the result that the effect of a dynamic contact angle on imbibition increases. As the capillary becomes more hydrophilic, the effect of a dynamic contact angle on imbibition becomes stronger because of a decreasing viscous effect and an increasing frictional effect. As the capillary length increases, the viscous effect increases, whereas the frictional effect decreases, leading to a decrease in the dynamic contact angle effect. As the capillary radius increases, the frictional force decreases, whereas its proportion in total resistance or the frictional effect increases, resulting in an increase in the effect of a dynamic contact angle. This work sheds light on the effect of a dynamic contact angle on capillary-liquid-liquid imbibition, including displacing phase viscosity, displaced phase viscosity, interfacial tension, capillary wettability, length, and radius. It will provide new insights into manipulating a capillary imbibition process and provide a fundamental theory for enhanced oil recovery by imbibition in conventional or unconventional reservoirs. Supplementary materials are available in support of this paper and have been published online under Supplementary Data at https://doi.org/10.2118/205490-PA. SPE is not responsible for the content or functionality of supplementary materials supplied by the authors.


Author(s):  
Y. Zhaokai ◽  
A.N. Temnov

The paper considers an axisymmetric problem of determining the forms of equilibrium of liquid in spacecraft toroidal tanks under conditions close to weightlessness. In the absence of significant mass gravitational forces, the behavior of liquid fuel in tanks begins to be determined by surface tension forces, which are intermolecular forces at the interface of two phases. Relying on the principle of stationary potential, we obtained the conditions of equilibrium of the closed system "liquid - gas - solid wall" under microgravity conditions. The study introduces a system of differential equations that determines the form of equilibrium of a liquid in toroidal tanks, the Young — Dupre equation, the condition for the contact of a free surface with a solid wall, and the condition for the conservation of the volume of the liquid. Furthermore, we quantified the influence of various parameters, such as the contact angle α_0, the Bond number B_0, the ratio of the radii of the circles δ=R_0⁄r_0 and the relative filling volume of liquids V_0, on the form of the equilibrium of the capillary liquid. The study of the forms of equilibrium of liquid fuel makes it possible to develop recommendations for the design of intake devices for fuel tanks in rocket and space technology. Findings of research show that the obtained equilibrium surface is also the unperturbed boundary of the region occupied by liquid fuel, which gives necessary information for further investigation of the spacecraft dynamics.


Sign in / Sign up

Export Citation Format

Share Document