scholarly journals MLR-1023 Treatment in Mice and Humans Induces a Thermogenic Program, and Menthol Potentiates the Effect

2021 ◽  
Vol 14 (11) ◽  
pp. 1196
Author(s):  
Candida J. Rebello ◽  
Ann A. Coulter ◽  
Andrew G. Reaume ◽  
Weina Cong ◽  
Luke A. Cusimano ◽  
...  

A glucose-lowering medication that acts by a different mechanism than metformin, or other approved diabetes medications, can supplement monotherapies when patients fail to meet blood glucose goals. We examined the actions underlying the effects of an insulin sensitizer, tolimidone (MLR-1023) and investigated its effects on body weight. Diet-induced obesity (CD1/ICR) and type 2 diabetes (db/db) mouse models were used to study the effect of MLR-1023 on metabolic outcomes and to explore its synergy with menthol. We also examined the efficacy of MLR-1023 alone in a clinical trial (NCT02317796), as well as in combination with menthol in human adipocytes. MLR-1023 produced weight loss in humans in four weeks, and in mice fed a high-fat diet it reduced weight gain and fat mass without affecting food intake. In human adipocytes from obese donors, the upregulation of Uncoupling Protein 1, Glucose (UCP)1, adiponectin, Glucose Transporter Type 4 (GLUT4), Adipose Triglyceride Lipase (ATGL), Carnitine palmitoyltransferase 1 beta (CPT1β), and Transient Receptor Potential Melastin (TRPM8) mRNA expression suggested the induction of thermogenesis. The TRPM8 agonist, menthol, potentiated the effect of MLR-1023 on the upregulation of genes for energy expenditure and insulin sensitivity in human adipocytes, and reduced fasting blood glucose in mice. The amplification of the thermogenic program by MLR-1023 and menthol in the absence of adrenergic activation will likely be well-tolerated, and bears investigation in a clinical trial.

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Robert D. Cohen ◽  
Christopher L. Brown ◽  
Carole Nickols ◽  
Pauline Levey ◽  
Barbara J. Boucher ◽  
...  

The spherical anatomy of human and rat liver lobules implies that more central cells have less time to carry out their function than more peripherally located cells because blood flows past them more rapidly. This problem could be overcome if more centrilobular cells could operate at higher temperatures than periportal cells. This study presents evidence for such a temperature gradient. Firstly, we use mathematical modelling to demonstrate that temperature increases towards the centre of the lobule. Secondly, we examine the distribution of a heat-generating protein and of a heat-sensitive protein across the rat and human liver lobules. Double-antibody staining of healthy liver from rat and human was used for visual scoring and for automated histomorphometric quantitation of the localisation of uncoupling protein-2 (known to generate heat) and of the transient receptor potential-v4 protein (known as a highly temperature-sensitive membrane protein). Both these proteins were found to be located predominantly in the centrilobular region of liver lobules. These findings support the suggestion that temperature gradients across the liver lobule may have evolved as a solution to the problem of reduced contact time between blood and cells at the centre as compared to the periphery of mammalian liver lobules.


2014 ◽  
Vol 306 (1) ◽  
pp. G1-G12 ◽  
Author(s):  
Phuntila Tharabenjasin ◽  
Veronique Douard ◽  
Chirag Patel ◽  
Nateetip Krishnamra ◽  
Richard J. Johnson ◽  
...  

Fructose consumption by Americans has increased markedly, whereas Ca2+ intake has decreased below recommended levels. Because fructose metabolism decreases enterocyte ATP concentrations, we tested the hypothesis that luminal fructose acutely reduces active, diet-inducible Ca2+ transport in the small intestine. We confirmed that the decrease in ATP concentrations was indeed greater in fructose- compared with glucose-incubated mucosal homogenates from wild-type and was prevented in fructose-incubated homogenates from ketohexokinase (KHK)−/− mice. We then induced active Ca2+ transport by chronically feeding wild-type, fructose transporter glucose transporter 5 (GLUT5)−/−, as well as KHK−/− mice a low Ca2+ diet and measured transepithelial Ca2+ transport in everted duodenal sacs incubated in solutions containing glucose, fructose, or their nonmetabolizable analogs. The diet-induced increase in active Ca2+ transport was proportional to dramatic increases in expression of the Ca2+-selective channel transient receptor potential vanilloid family calcium channel 6 as well as of the Ca2+-binding protein 9k (CaBP9k) but not that of the voltage-dependent L-type channel Ca(v)1.3. Crypt-villus distribution of CaBP9k seems heterogeneous, but low Ca2+ diets induce expression in more cells. In contrast, KHK distribution is homogeneous, suggesting that fructose metabolism can occur in all enterocytes. Diet-induced Ca2+ transport was not enhanced by addition of the enterocyte fuel glutamine and was always greater in sacs of wild-type, GLUT5−/−, and KHK−/− mice incubated with fructose or nonmetabolizable sugars than those incubated with glucose. Thus duodenal Ca2+ transport is not affected by fructose and enterocyte ATP concentrations but instead may decrease with glucose metabolism, as Ca2+ transport remains high with 3- O-methylglucose that is also transported by sodium-glucose cotransporter 1 but cannot be metabolized.


2007 ◽  
Vol 74 ◽  
pp. 37-45 ◽  
Author(s):  
James W. Putney

The original hypothesis put forth by Bob Michell in his seminal 1975 review held that inositol lipid breakdown was involved in the activation of plasma membrane calcium channels or ‘gates’. Subsequently, it was demonstrated that while the interposition of inositol lipid breakdown upstream of calcium signalling was correct, it was predominantly the release of Ca2+ that was activated, through the formation of Ins(1,4,5)P3. Ca2+ entry across the plasma membrane involved a secondary mechanism signalled in an unknown manner by depletion of intracellular Ca2+ stores. In recent years, however, additional non-store-operated mechanisms for Ca2+ entry have emerged. In many instances, these pathways involve homologues of the Drosophila trp (transient receptor potential) gene. In mammalian systems there are seven members of the TRP superfamily, designated TRPC1–TRPC7, which appear to be reasonably close structural and functional homologues of Drosophila TRP. Although these channels can sometimes function as store-operated channels, in the majority of instances they function as channels more directly linked to phospholipase C activity. Three members of this family, TRPC3, 6 and 7, are activated by the phosphoinositide breakdown product, diacylglycerol. Two others, TRPC4 and 5, are also activated as a consequence of phospholipase C activity, although the precise substrate or product molecules involved are still unclear. Thus the TRPCs represent a family of ion channels that are directly activated by inositol lipid breakdown, confirming Bob Michell's original prediction 30 years ago.


2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


Sign in / Sign up

Export Citation Format

Share Document