scholarly journals Short Term Stability Testing of Efavirenz-Loaded Solid Lipid Nanoparticle (SLN) and Nanostructured Lipid Carrier (NLC) Dispersions

Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 397 ◽  
Author(s):  
Pedzisai A. Makoni ◽  
Kasongo Wa Kasongo ◽  
Roderick B. Walker

The short term stability of efavirenz-loaded solid lipid nanoparticle and nanostructured lipid carrier dispersions was investigated. Hot High Pressure Homogenization with the capability for scale up production was successfully used to manufacture the nanocarriers without the use of toxic organic solvents for the first time. Glyceryl monostearate and Transcutol® HP were used as the solid and liquid lipids. Tween® 80 was used to stabilize the lipid nanocarriers. A Box-Behnken Design was used to identify the optimum operating and production conditions viz., 1100 bar for 3 cycles for the solid lipid nanoparticles and 1500 bar for 5 cycles for nanostructured lipid carriers. The optimized nanocarriers were predicted to exhibit 10% efavirenz loading with 3% and 4% Tween® 80 for solid lipid nanoparticles and nanostructured lipid carriers, respectively. Characterization of the optimized solid lipid nanoparticle and nanostructured lipid carrier formulations in relation to shape, surface morphology, polymorphism, crystallinity and compatibility revealed stable formulations with particle sizes in the nanometer range had been produced. The nanocarriers had excellent efavirenz loading with the encapsulation efficiency >90%. The optimized nanocarriers exhibited biphasic in vitro release patterns with an initial burst release during the initial 0–3 h followed by sustained release over a 24 h period The colloidal systems showed excellent stability in terms of Zeta potential, particle size, polydispersity index and encapsulation efficiency when stored for 8 weeks at 25 °C/60% RH in comparison to when stored at 40 °C/75% RH. The formulations manufactured using the optimized conditions and composition proved to be physically stable as aqueous dispersions.

2019 ◽  
Vol 9 (3) ◽  
pp. 212-221 ◽  
Author(s):  
Aparna Bhalerao ◽  
Pankaj Prakash Chaudhari

Cilinidipine is a fourth generation N and L-type calcium channel antagonists used alone or in combination with another drug to treat hypertension. Cilnidipine is poorly water -soluble, BCS class II drug with 6 to 30 percent oral bioavailability due to first pass metabolism. So to protect the drug from degradation and improve its dissolution, solid lipid nanoparticles were prepared. Glyceryl monostearate was selected as lipid while span 20: tween 20 were selected as surfactant blends. The formulations were evaluated for various parameters, as percent transmittance, drug content, percent encapsulation efficiency; percent drug loading, In vitro drug release and particle size. Optimized formulation was lyophilized using lactose as a cryo-protectant. The lyophilized formulation was evaluated for micromeritic properties, particle size and in vitro dissolution. It was further evaluated for DSC, XRD, and SEM. Percent encapsulation efficiency and percent drug loading of optimized formulation (F3) were 78.66percent and 9.44percent respectively. The particle size of F3 formulation without drug was 204 nm and with the drug was 214 nm. The particle size of the reconstituted SLN was 219 nm. In DSC study, no obvious peaks for cilnidipine were found in the SLN of cilnidipine indicated that the cilnidipine must be present in a molecularly dissolved state in SLN. In X-ray diffractometry absence of peaks representing crystals of cilnidipine in SLN indicated that the drug was in an amorphous or disordered crystalline phase in the lipid matrix. Thus, solid lipid nanoparticle formulation is a promising way to enhance the dissolution rate of cilnidipine. Keywords: Cilnidipine, Solid Lipid Nanoparticle, Hypertension


Author(s):  
Anahera C ◽  
Kahurangi S

Dithranol belongs to the keratolytic category, which is widely used drug in the treatment of psoriasis. The drug is virtually inexplicable in water. Many conservative quantity forms for psoriasis treatment have been have been formulated earlier, but they did not show good results. Hence in the present study, it was attempted to invent dithranol in the form of solid lipid nanoparticle. Solid lipid nanoparticles of dithranol were obtained by alteration of lipid spreading method. Preformulation studies were performed to check the compatibility of drug and excepient for the development of formulation by DSC and no statement was found. Solubility study, division coefficient purpose, UV examination, HPLC study, FTIR study were also performed. After the preformulation studies Dithranol loaded solid lipid nanoparticles was also prepared. Hence it was concluded that solid lipid nanoparticle of dithranol could be formulated.


Author(s):  
Sudhanshu Bhusan Routray ◽  
Ch. Niranjan Patra

Objective: The objective of the present research is to formulate solid lipid nanoparticles of cinnacalcet HCl to improve its oral bioavailability. Methods: Cinnacalcet hydrochloride exhibits poor oral bioavailability of 20 to 25 % because of low aqueous solubility and first pass metabolism. The formulations were optimised using Box-Behnken Design. Solid lipid nanoparticles formulation was prepared using hot homogenization and ultra sonication method. Results and Discussion: Precirol ATO 05, Soya lecithin and poloxamer 407 were selected as lipid, surfactant and co-surfactant respectively. For optimistaion the desirable goal was fixed for various responses entrapment efficiency, particle size and (time taken for diffusion of 85% drug) T85%. The optimized single dose of solid lipid nanoparticle obtained using box behnken design consisting of 30 mg of cinnacalcet HCl, 200 mg of precirol ATO 05, 250 mg of soya lecithin and 0.2% w/v of poloxamer. 407. The pharmacokinetic study revealed that optimized formulation was found to increase the oral bioavailability nearly 3 times compared to aqueous suspension of pure drug. Conclusion: Thus optimized solid lipid nanoparticle explicated the potential of lipid-based nanoparticles as a potential carrier in improving the oral delivery.


RSC Advances ◽  
2015 ◽  
Vol 5 (55) ◽  
pp. 43917-43929 ◽  
Author(s):  
Harshad Harde ◽  
Ashish Kumar Agrawal ◽  
Mahesh Katariya ◽  
Dnyaneshwar Kale ◽  
Sanyog Jain

The present investigation substantiates the efficacy of adapalene loaded solid lipid nanoparticles (Ada-SLNs) in ameliorating the skin irritation potential of adapalene owing to its altered skin distribution.


2018 ◽  
Vol 8 (6-s) ◽  
pp. 63-69
Author(s):  
Sandip Akaram Bandgar ◽  
Pranali Dhavale ◽  
Pravin Patil ◽  
Sardar Shelake ◽  
Shitalkumar Patil

Solid Lipid Nanoparticles (SLN) are rapidly developing field of nanotechnology with several potential application in drug delivery and research. Drugs having low aqueous solubility not only give low oral bioavailability but provide high inter-and intra subject variability. The purpose of the present study was to investigate the bioavailability enhancement of Prazosin Hydrochloride drug by formulating solid lipid nanoparticle. Prazosin Hydrochloride Drug is an antihypertensive drug with limited bioavailability so that solid lipid nanoparticle (SLN) is one of the approaches to improve bioavailability. SLN were prepared using glyceryl monostearate by hot homogenization followed by Solvent emulsification-ultrasonication. Prazosin Hydrochloride loaded SLN were characterized and optimized by parameters like particle size, zeta potential, XRD, DSC. Proposing Hydrochloride loaded SLN having the particle size 263.8±1.88 and entrapment efficiency 89.29±0.65% shows better bioavailability and optimum stability in studies. The SLN studies prepared using glyceryl mono stearate   as a lipid and Polaxamer 407 as a polymer leads to improve bioavailability of the drug. Keywords: Prazosin Hydrochloride, Solid Lipid Nanoparticles, Entrapment efficiency, DSC


Author(s):  
Haniza Hassan ◽  
Siti Khadijah Adam ◽  
Ahmad Fuad Shamsuddin ◽  
Rusliza Basir

2011 ◽  
Vol 6 (4) ◽  
pp. 240-250 ◽  
Author(s):  
Rajashree Hirlekar ◽  
Harshal Garse ◽  
Vilasrao Kadam

2021 ◽  
Vol 14 (8) ◽  
pp. 711
Author(s):  
Cláudia Pina Costa ◽  
Sandra Barreiro ◽  
João Nuno Moreira ◽  
Renata Silva ◽  
Hugo Almeida ◽  
...  

The nasal route has been used for many years for the local treatment of nasal diseases. More recently, this route has been gaining momentum, due to the possibility of targeting the central nervous system (CNS) from the nasal cavity, avoiding the blood−brain barrier (BBB). In this area, the use of lipid nanoparticles, such as nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN), in nasal formulations has shown promising outcomes on a wide array of indications such as brain diseases, including epilepsy, multiple sclerosis, Alzheimer’s disease, Parkinson’s disease and gliomas. Herein, the state of the art of the most recent literature available on in vitro studies with nasal formulations of lipid nanoparticles is discussed. Specific in vitro cell culture models are needed to assess the cytotoxicity of nasal formulations and to explore the underlying mechanism(s) of drug transport and absorption across the nasal mucosa. In addition, different studies with 3D nasal casts are reported, showing their ability to predict the drug deposition in the nasal cavity and evaluating the factors that interfere in this process, such as nasal cavity area, type of administration device and angle of application, inspiratory flow, presence of mucoadhesive agents, among others. Notwithstanding, they do not preclude the use of confirmatory in vivo studies, a significant impact on the 3R (replacement, reduction and refinement) principle within the scope of animal experiments is expected. The use of 3D nasal casts to test nasal formulations of lipid nanoparticles is still totally unexplored, to the authors best knowledge, thus constituting a wide open field of research.


Sign in / Sign up

Export Citation Format

Share Document