Development of a topical adapalene-solid lipid nanoparticle loaded gel with enhanced efficacy and improved skin tolerability

RSC Advances ◽  
2015 ◽  
Vol 5 (55) ◽  
pp. 43917-43929 ◽  
Author(s):  
Harshad Harde ◽  
Ashish Kumar Agrawal ◽  
Mahesh Katariya ◽  
Dnyaneshwar Kale ◽  
Sanyog Jain

The present investigation substantiates the efficacy of adapalene loaded solid lipid nanoparticles (Ada-SLNs) in ameliorating the skin irritation potential of adapalene owing to its altered skin distribution.

Author(s):  
Anahera C ◽  
Kahurangi S

Dithranol belongs to the keratolytic category, which is widely used drug in the treatment of psoriasis. The drug is virtually inexplicable in water. Many conservative quantity forms for psoriasis treatment have been have been formulated earlier, but they did not show good results. Hence in the present study, it was attempted to invent dithranol in the form of solid lipid nanoparticle. Solid lipid nanoparticles of dithranol were obtained by alteration of lipid spreading method. Preformulation studies were performed to check the compatibility of drug and excepient for the development of formulation by DSC and no statement was found. Solubility study, division coefficient purpose, UV examination, HPLC study, FTIR study were also performed. After the preformulation studies Dithranol loaded solid lipid nanoparticles was also prepared. Hence it was concluded that solid lipid nanoparticle of dithranol could be formulated.


2019 ◽  
Vol 9 (3) ◽  
pp. 212-221 ◽  
Author(s):  
Aparna Bhalerao ◽  
Pankaj Prakash Chaudhari

Cilinidipine is a fourth generation N and L-type calcium channel antagonists used alone or in combination with another drug to treat hypertension. Cilnidipine is poorly water -soluble, BCS class II drug with 6 to 30 percent oral bioavailability due to first pass metabolism. So to protect the drug from degradation and improve its dissolution, solid lipid nanoparticles were prepared. Glyceryl monostearate was selected as lipid while span 20: tween 20 were selected as surfactant blends. The formulations were evaluated for various parameters, as percent transmittance, drug content, percent encapsulation efficiency; percent drug loading, In vitro drug release and particle size. Optimized formulation was lyophilized using lactose as a cryo-protectant. The lyophilized formulation was evaluated for micromeritic properties, particle size and in vitro dissolution. It was further evaluated for DSC, XRD, and SEM. Percent encapsulation efficiency and percent drug loading of optimized formulation (F3) were 78.66percent and 9.44percent respectively. The particle size of F3 formulation without drug was 204 nm and with the drug was 214 nm. The particle size of the reconstituted SLN was 219 nm. In DSC study, no obvious peaks for cilnidipine were found in the SLN of cilnidipine indicated that the cilnidipine must be present in a molecularly dissolved state in SLN. In X-ray diffractometry absence of peaks representing crystals of cilnidipine in SLN indicated that the drug was in an amorphous or disordered crystalline phase in the lipid matrix. Thus, solid lipid nanoparticle formulation is a promising way to enhance the dissolution rate of cilnidipine. Keywords: Cilnidipine, Solid Lipid Nanoparticle, Hypertension


Author(s):  
Sudhanshu Bhusan Routray ◽  
Ch. Niranjan Patra

Objective: The objective of the present research is to formulate solid lipid nanoparticles of cinnacalcet HCl to improve its oral bioavailability. Methods: Cinnacalcet hydrochloride exhibits poor oral bioavailability of 20 to 25 % because of low aqueous solubility and first pass metabolism. The formulations were optimised using Box-Behnken Design. Solid lipid nanoparticles formulation was prepared using hot homogenization and ultra sonication method. Results and Discussion: Precirol ATO 05, Soya lecithin and poloxamer 407 were selected as lipid, surfactant and co-surfactant respectively. For optimistaion the desirable goal was fixed for various responses entrapment efficiency, particle size and (time taken for diffusion of 85% drug) T85%. The optimized single dose of solid lipid nanoparticle obtained using box behnken design consisting of 30 mg of cinnacalcet HCl, 200 mg of precirol ATO 05, 250 mg of soya lecithin and 0.2% w/v of poloxamer. 407. The pharmacokinetic study revealed that optimized formulation was found to increase the oral bioavailability nearly 3 times compared to aqueous suspension of pure drug. Conclusion: Thus optimized solid lipid nanoparticle explicated the potential of lipid-based nanoparticles as a potential carrier in improving the oral delivery.


2018 ◽  
Vol 8 (6-s) ◽  
pp. 63-69
Author(s):  
Sandip Akaram Bandgar ◽  
Pranali Dhavale ◽  
Pravin Patil ◽  
Sardar Shelake ◽  
Shitalkumar Patil

Solid Lipid Nanoparticles (SLN) are rapidly developing field of nanotechnology with several potential application in drug delivery and research. Drugs having low aqueous solubility not only give low oral bioavailability but provide high inter-and intra subject variability. The purpose of the present study was to investigate the bioavailability enhancement of Prazosin Hydrochloride drug by formulating solid lipid nanoparticle. Prazosin Hydrochloride Drug is an antihypertensive drug with limited bioavailability so that solid lipid nanoparticle (SLN) is one of the approaches to improve bioavailability. SLN were prepared using glyceryl monostearate by hot homogenization followed by Solvent emulsification-ultrasonication. Prazosin Hydrochloride loaded SLN were characterized and optimized by parameters like particle size, zeta potential, XRD, DSC. Proposing Hydrochloride loaded SLN having the particle size 263.8±1.88 and entrapment efficiency 89.29±0.65% shows better bioavailability and optimum stability in studies. The SLN studies prepared using glyceryl mono stearate   as a lipid and Polaxamer 407 as a polymer leads to improve bioavailability of the drug. Keywords: Prazosin Hydrochloride, Solid Lipid Nanoparticles, Entrapment efficiency, DSC


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 397 ◽  
Author(s):  
Pedzisai A. Makoni ◽  
Kasongo Wa Kasongo ◽  
Roderick B. Walker

The short term stability of efavirenz-loaded solid lipid nanoparticle and nanostructured lipid carrier dispersions was investigated. Hot High Pressure Homogenization with the capability for scale up production was successfully used to manufacture the nanocarriers without the use of toxic organic solvents for the first time. Glyceryl monostearate and Transcutol® HP were used as the solid and liquid lipids. Tween® 80 was used to stabilize the lipid nanocarriers. A Box-Behnken Design was used to identify the optimum operating and production conditions viz., 1100 bar for 3 cycles for the solid lipid nanoparticles and 1500 bar for 5 cycles for nanostructured lipid carriers. The optimized nanocarriers were predicted to exhibit 10% efavirenz loading with 3% and 4% Tween® 80 for solid lipid nanoparticles and nanostructured lipid carriers, respectively. Characterization of the optimized solid lipid nanoparticle and nanostructured lipid carrier formulations in relation to shape, surface morphology, polymorphism, crystallinity and compatibility revealed stable formulations with particle sizes in the nanometer range had been produced. The nanocarriers had excellent efavirenz loading with the encapsulation efficiency >90%. The optimized nanocarriers exhibited biphasic in vitro release patterns with an initial burst release during the initial 0–3 h followed by sustained release over a 24 h period The colloidal systems showed excellent stability in terms of Zeta potential, particle size, polydispersity index and encapsulation efficiency when stored for 8 weeks at 25 °C/60% RH in comparison to when stored at 40 °C/75% RH. The formulations manufactured using the optimized conditions and composition proved to be physically stable as aqueous dispersions.


2020 ◽  
Vol 37 (8) ◽  
Author(s):  
Linna B. O. Rodrigues ◽  
Flávia A. Lima ◽  
Camila P. B. Alves ◽  
Elisângela Martins-Santos ◽  
Marta M. G. Aguiar ◽  
...  

2009 ◽  
Vol 381 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Gisele A. Castro ◽  
Anna Luíza L.R. Coelho ◽  
Cleida A. Oliveira ◽  
Germán A.B. Mahecha ◽  
Rodrigo L. Oréfice ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Pandurangan Subash-Babu ◽  
Nada Al-Saran ◽  
Ghedeir M. Alshammari ◽  
Laila Naif Al-Harbi ◽  
Maha Hussain Alhussain ◽  
...  

The present study aimed to synthesize solid lipid nanoparticles to enhance liposome-assisted intracellular uptake of basil seed active components in adipocytes and vascular smooth muscle cells to attain increased bioavailability. To obtain solid lipid nanoparticle (SLNp), the water phase containing basil seed extract (BSE) was encapsulated with lipid matrix containing chia seed phospholipids using homogenization and cold ultra-sonication method. The physicochemical characterization of BSE loaded solid lipid nanoparticles (BSE-SLNp) has been analyzed using Zetasizer, FT-IR, and TEM. The BSE-SLNp showed an average diameter of 20–110 nm on the day of preparation and it remains the same after 60 days of storage. The cytotoxicity assay confirmed that the BSE-SLNp did not produce toxicity in hMSCs, preadipocytes, or human umbilical vein endothelial cells (HUVECs) until the tested higher dose up to 64 μg/ml. During effective dose determination, 4 μg/ml of BSE-SLNp confirmed non-toxic and enhanced metabolic function in hMSCs, preadipocytes, and HUVECs. Biosafety assay confirmed normal nuclear morphology in PI staining and high mitochondrial membrane potential in JC-1 assay within 48 h in hMSCs. The maturing adipocyte treated with 4 μg/ml of BSE-SLNp significantly increased the mitochondrial efficiency and fatty acid beta-oxidation (PPARγC1α, UCP-1, and PRDM-16) related gene expression levels. Oxidative stress induced HUVECs treated with 4 μg/ml of BSE-SLNp potentially enhanced antioxidant capacity, cell growth, and microtubule development within 48 h H2O2 induced oxidative stressed HUVECs have shown 39.8% viable cells, but treatment with BSE-SLNp has shown 99% of viable cells within 48 h confirmed by Annexin-V assay. In addition, mitochondrial membrane potential (Δψm) increased to 89.4% confirmed by JC-1 assay. The observed DNA integrity, cell viability was confirmed by increased antioxidant and tumor suppressor-related gene expression levels. VEGF expression has been significantly increased and pro-inflammation-related mRNA levels were decreased in BSE-SLNp treated cells. In conclusion, enhanced adipocyte fatty acid oxidation is directly associated with decreased adipocytokine secretion which arrests obesity-associated comorbidities. In addition, suppressing vascular cell oxidative stress and metabolic inflammation supports vascular cell proliferation and arrests ageing-related vascular diseases.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1251
Author(s):  
Lide Arana ◽  
Lucia Gallego ◽  
Itziar Alkorta

Antimicrobial resistance is one of the biggest threats to global health as current antibiotics are becoming useless against resistant infectious pathogens. Consequently, new antimicrobial strategies are urgently required. Drug delivery systems represent a potential solution to improve current antibiotic properties and reverse resistance mechanisms. Among different drug delivery systems, solid lipid nanoparticles represent a highly interesting option as they offer many advantages for nontoxic targeted drug delivery. Several publications have demonstrated the capacity of SLNs to significantly improve antibiotic characteristics increasing treatment efficiency. In this review article, antibiotic-loaded solid lipid nanoparticle-related works are analyzed to summarize all information associated with applying these new formulations to tackle the antibiotic resistance problem. The main antimicrobial resistance mechanisms and relevant solid lipid nanoparticle characteristics are presented to later discuss the potential of these nanoparticles to improve current antibiotic treatment characteristics and overcome antimicrobial resistance mechanisms. Moreover, solid lipid nanoparticles also offer new possibilities for other antimicrobial agents that cannot be administrated as free drugs. The advantages and disadvantages of these new formulations are also discussed in this review. Finally, given the progress of the studies carried out to date, future directions are discussed.


RSC Advances ◽  
2016 ◽  
Vol 6 (59) ◽  
pp. 53784-53793 ◽  
Author(s):  
P. N. Ezhilarasi ◽  
S. P. Muthukumar ◽  
C. Anandharamakrishnan

Solid lipid nanoparticles (SLN) are the most promising delivery system that improves the stability, bioavailability and controlled release of food bioactive compounds.


Sign in / Sign up

Export Citation Format

Share Document