scholarly journals Current Evidence, Challenges, and Opportunities of Physiologically Based Pharmacokinetic Models of Atorvastatin for Decision Making

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 709
Author(s):  
Javier Reig-López ◽  
Alfredo García-Arieta ◽  
Víctor Mangas-Sanjuán ◽  
Matilde Merino-Sanjuán

Atorvastatin (ATS) is the gold-standard treatment worldwide for the management of hypercholesterolemia and prevention of cardiovascular diseases associated with dyslipidemia. Physiologically based pharmacokinetic (PBPK) models have been positioned as a valuable tool for the characterization of complex pharmacokinetic (PK) processes and its extrapolation in special sub-groups of the population, leading to regulatory recognition. Several PBPK models of ATS have been published in the recent years, addressing different aspects of the PK properties of ATS. Therefore, the aims of this review are (i) to summarize the physicochemical and pharmacokinetic characteristics involved in the time-course of ATS, and (ii) to evaluate the major highlights and limitations of the PBPK models of ATS published so far. The PBPK models incorporate common elements related to the physicochemical aspects of ATS. However, there are important differences in relation to the analyte evaluated, the type and effect of transporters and metabolic enzymes, and the permeability value used. Additionally, this review identifies major processes (lactonization, P-gp contribution, ATS-Ca solubility, simultaneous management of multiple analytes, and experimental evidence in the target population), which would enhance the PBPK model prediction to serve as a valid tool for ATS dose optimization.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 813
Author(s):  
Yoo-Seong Jeong ◽  
Min-Soo Kim ◽  
Nora Lee ◽  
Areum Lee ◽  
Yoon-Jee Chae ◽  
...  

Fexuprazan is a new drug candidate in the potassium-competitive acid blocker (P-CAB) family. As proton pump inhibitors (PPIs), P-CABs inhibit gastric acid secretion and can be used to treat gastric acid-related disorders such as gastroesophageal reflux disease (GERD). Physiologically based pharmacokinetic (PBPK) models predict drug interactions as pharmacokinetic profiles in biological matrices can be mechanistically simulated. Here, we propose an optimized and validated PBPK model for fexuprazan by integrating in vitro, in vivo, and in silico data. The extent of fexuprazan tissue distribution in humans was predicted using tissue-to-plasma partition coefficients in rats and the allometric relationships of fexuprazan distribution volumes (VSS) among preclinical species. Urinary fexuprazan excretion was minimal (0.29–2.02%), and this drug was eliminated primarily by the liver and metabolite formation. The fraction absorbed (Fa) of 0.761, estimated from the PBPK modeling, was consistent with the physicochemical properties of fexuprazan, including its in vitro solubility and permeability. The predicted oral bioavailability of fexuprazan (38.4–38.6%) was within the range of the preclinical datasets. The Cmax, AUClast, and time-concentration profiles predicted by the PBPK model established by the learning set were accurately predicted for the validation sets.


2020 ◽  
Vol 37 (12) ◽  
Author(s):  
Hannah Britz ◽  
Nina Hanke ◽  
Mitchell E. Taub ◽  
Ting Wang ◽  
Bhagwat Prasad ◽  
...  

Abstract Purpose To provide whole-body physiologically based pharmacokinetic (PBPK) models of the potent clinical organic anion transporter (OAT) inhibitor probenecid and the clinical OAT victim drug furosemide for their application in transporter-based drug-drug interaction (DDI) modeling. Methods PBPK models of probenecid and furosemide were developed in PK-Sim®. Drug-dependent parameters and plasma concentration-time profiles following intravenous and oral probenecid and furosemide administration were gathered from literature and used for model development. For model evaluation, plasma concentration-time profiles, areas under the plasma concentration–time curve (AUC) and peak plasma concentrations (Cmax) were predicted and compared to observed data. In addition, the models were applied to predict the outcome of clinical DDI studies. Results The developed models accurately describe the reported plasma concentrations of 27 clinical probenecid studies and of 42 studies using furosemide. Furthermore, application of these models to predict the probenecid-furosemide and probenecid-rifampicin DDIs demonstrates their good performance, with 6/7 of the predicted DDI AUC ratios and 4/5 of the predicted DDI Cmax ratios within 1.25-fold of the observed values, and all predicted DDI AUC and Cmax ratios within 2.0-fold. Conclusions Whole-body PBPK models of probenecid and furosemide were built and evaluated, providing useful tools to support the investigation of transporter mediated DDIs.


2016 ◽  
Vol 60 (8) ◽  
pp. 4860-4868
Author(s):  
Todd J. Zurlinden ◽  
Garrett J. Eppers ◽  
Brad Reisfeld

ABSTRACTRifapentine (RPT) is a rifamycin antimycobacterial and, as part of a combination therapy, is indicated for the treatment of pulmonary tuberculosis (TB) caused byMycobacterium tuberculosis. Although the results from a number of studies indicate that rifapentine has the potential to shorten treatment duration and enhance completion rates compared to other rifamycin agents utilized in antituberculosis drug regimens (i.e., regimens 1 to 4), its optimal dose and exposure in humans are unknown. To help inform such an optimization, a physiologically based pharmacokinetic (PBPK) model was developed to predict time course, tissue-specific concentrations of RPT and its active metabolite, 25-desacetyl rifapentine (dRPT), in humans after specified administration schedules for RPT. Starting with the development and verification of a PBPK model for rats, the model was extrapolated and then tested using human pharmacokinetic data. Testing and verification of the models included comparisons of predictions to experimental data in several rat tissues and time course RPT and dRPT plasma concentrations in humans from several single- and repeated-dosing studies. Finally, the model was used to predict RPT concentrations in the lung during the intensive and continuation phases of a current recommended TB treatment regimen. Based on these results, it is anticipated that the PBPK model developed in this study will be useful in evaluating dosing regimens for RPT and for characterizing tissue-level doses that could be predictors of problems related to efficacy or safety.


2020 ◽  
Author(s):  
Zhonghui Huang ◽  
Tao You

AbstractBackground and AimVitamin D3 (i.e. cholecalciferol) produces an active metabolite 25-hydroxyvitamin D3 (i.e. 25(OH)D3) to promote intestinal calcium absorption. Given high population heterogeneity in 25(OH)D3 plasma concentration profiles, vitamin D3 dose regimen needs to be personalised. The objective of this study is to establish a model that accurately predicts 25(OH)D3 pharmacokinetics (PK) on an individual level to enable selection of an appropriate dose regimen for anyone.MethodsPlasma or serum concentrations of Vitamin D3 and 25(OH)D3 from different trials were compiled together. We then developed a series of Physiologically-Based Pharmacokinetic (PBPK) models for vitamin D3 and 25(OH)D3 in a stepwise manner to select the best model to optimally recapitulate the 10μg and 100μg daily dose data. Each arm of the clinical trials was simulated individually. Model predictions were qualified with PK data at other doses.ResultsFrom data exploration, we observed an interesting phenomenon: the increase in plasma 25(OH)D3 after repeat dosing was negatively correlated with 25(OH)D3 baseline levels. Our final model assumes a first-order vitamin D3 absorption, linear vitamin D3 elimination and a non-linear 25(OH)D3 elimination which is described with an Emax function. This model offers a simple explanation to the apparent paradox: the negative correlation might arise from the non-linear 25(OH)D3 elimination process. The model was also able to accurately predict plasma 25(OH)D3 after repeat dosing at daily doses other than 10μg and 100μg, which was reassuring.ConclusionsWe developed a PBPK model to recapitulate PK of plasma vitamin D3 and 25(OH)D3. A personalised vitamin D3 supplementation protocol requires measurement of 25(OH)D3 baseline levels. This should be tested in the clinics for each individual.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 578
Author(s):  
Muhammad F. Rasool ◽  
Sundus Khalid ◽  
Abdul Majeed ◽  
Hamid Saeed ◽  
Imran Imran ◽  
...  

The physiologically based pharmacokinetic (PBPK) approach facilitates the construction of novel drug–disease models by allowing incorporation of relevant pathophysiological changes. The aim of the present work was to explore and identify the differences in rifampicin pharmacokinetics (PK) after the application of its single dose in healthy and diseased populations by using PBPK drug–disease models. The Simcyp® simulator was used as a platform for modeling and simulation. The model development process was initiated by predicting rifampicin PK in healthy population after intravenous (i.v) and oral administration. Subsequent to successful evaluation in healthy population, the pathophysiological changes in tuberculosis and cirrhosis population were incorporated into the developed model for predicting rifampicin PK in these populations. The model evaluation was performed by using visual predictive checks and the comparison of mean observed/predicted ratios (ratio(Obs/pred)) of the PK parameters. The predicted PK parameters in the healthy population were in adequate harmony with the reported clinical data. The incorporation of pathophysiological changes in albumin concentration in the tuberculosis population revealed improved prediction of clearance. The developed PBPK drug–disease models have efficiently described rifampicin PK in tuberculosis and cirrhosis populations after administering single drug dose, as the ratio(Obs/pred) for all the PK parameters were within a two-fold error range. The mechanistic nature of the developed PBPK models may facilitate their extension to other diseases and drugs.


Sign in / Sign up

Export Citation Format

Share Document