scholarly journals Recent Technologies for Amorphization of Poorly Water-Soluble Drugs

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1318
Author(s):  
Do-Hyun Kim ◽  
Young-Woo Kim ◽  
Yee-Yee Tin ◽  
Mya-Thet-Paing Soe ◽  
Byoung-Hyen Ko ◽  
...  

Amorphization technology has been the subject of continuous attention in the pharmaceutical industry, as a means to enhance the solubility of poorly water-soluble drugs. Being in a high energy state, amorphous formulations generally display significantly increased apparent solubility as compared to their crystalline counterparts, which may allow them to generate a supersaturated state in the gastrointestinal tract and in turn, improve the bioavailability. Conventionally, hydrophilic polymers have been used as carriers, in which the amorphous drugs were dispersed and stabilized to form polymeric amorphous solid dispersions. However, the technique had its limitations, some of which include the need for a large number of carriers, the tendency to recrystallize during storage, and the possibility of thermal decomposition of the drug during preparation. Therefore, emerging amorphization technologies have focused on the investigation of novel amorphous-stabilizing carriers and preparation methods that can improve the drug loading and the degree of amorphization. This review highlights the recent pharmaceutical approaches utilizing drug amorphization, such as co-amorphous systems, mesoporous particle-based techniques, and in situ amorphization. Recent updates on these technologies in the last five years are discussed with a focus on their characteristics and commercial potential.

2020 ◽  
Vol 10 (3) ◽  
pp. 359-369
Author(s):  
Avinash Ramrao Tekade ◽  
Jyoti Narayan Yadav

A large number of hydrophilic and hydrophobic carriers in pharmaceutical excipients are available today which are used for formulation of solid dispersions. Depending on nature of carriers the immediate release solid dispersions and/or controlled release solid dispersions can be formulated. Initially crystalline carriers were used which are transformed into amorphous solid dispersions with enhanced properties. The carriers used previously were mostly synthetic one. Recent trend towards the use of natural carriers have replaced the use of synthetic carriers. This review is the overview of various synthetic, natural, semisynthetic, modified natural hydrophilic carriers used for formulation of solid dispersions.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 654 ◽  
Author(s):  
Edina Szabó ◽  
Balázs Démuth ◽  
Dorián László Galata ◽  
Panna Vass ◽  
Edit Hirsch ◽  
...  

Preparation and formulation of amorphous solid dispersions (ASDs) are becoming more and more popular in the pharmaceutical field because the dissolution of poorly water-soluble drugs can be effectively improved this way, which can lead to increased bioavailability in many cases. During downstream processing of ASDs, technologists need to keep in mind both traditional challenges and the newest trends. In the last decade, the pharmaceutical industry began to display considerable interest in continuous processing, which can be explained with their potential advantages such as smaller footprint, easier scale-up, and more consistent product, better quality and quality assurance. Continuous downstream processing of drug-loaded ASDs opens new ways for automatic operation. Therefore, the formulation of poorly water-soluble drugs may be more effective and safe. However, developments can be challenging due to the poor flowability and feeding properties of ASDs. Consequently, this review pays special attention to these characteristics since the feeding of the components greatly influences the content uniformity in the final dosage form. The main purpose of this paper is to summarize the most important steps of the possible ASD-based continuous downstream processes in order to give a clear overview of current course lines and future perspectives.


2020 ◽  
Vol 02 (01) ◽  
pp. e55-e63
Author(s):  
Andrew Toye Ojo ◽  
Ping I. Lee

AbstractDynamic mechanical analysis (DMA) offers several advantages over prevailing methods in the characterization of amorphous solid dispersions (ASDs) typically used for improving the delivery of poorly water-soluble drugs. This method of analysis, though underutilized in the study of pharmaceutical systems, is particularly attuned to rheological investigations of thermal and mechanical properties of solids such as ASDs. Its ability to determine the viscoelastic properties of systems across a wide range of temperatures and shear conditions provides useful insight for the development and processing of ASDs. The response of materials to an imposed stress, captured by DMA, can help identify proper conditions for preparing homogenous extrudates of the polymer and active pharmaceutical ingredient through hot melt extrusion (HME). As HME continues to gain utility within the pharmaceutical industry, the ability to tailor process conditions will become increasingly important for the efficient design and production of ASD products for poorly water-soluble drugs. Furthermore, DMA can be used to probe molecular mobility and its link to physical stability of ASDs. Establishing the link between molecular mobility and crystallization kinetics is central to predicting the physical stability of ASDs. Therefore, increasing the understanding of material properties through DMA will enable the successful development of more stable amorphous drug products. This review summarizes current characterization tools for ASDs and discusses the potential of utilizing DMA as a robust alternative to traditional methods.


Author(s):  
RUCHI AGRAWAL ◽  
ABID RAZA ◽  
OM PRAKASH PATEL

Objective: This review article explores solid dispersions (SDs) as one of the suitable approaches to formulate poorly water-soluble drugs. The objective of this review on SD techniques is to explore their utility as a feasible, simple, and economically viable method for augmentation of dissolution of hydrophobic drugs. Methods: Various types of SDs are classified and compared. Use of surfactants to stabilize the SDs and their potential advantages and disadvantages has been discussed. Different techniques for preparing and evaluating SDs are appraised along with discussions on scalability and industrial production. Review of the current research on SD along with future trends is also offered. Results: Based on the various researches, SDs offer an efficient means of improving bioavailability while concurrently contributing to lower toxicity and dose-reduction. Conclusion: Solid-dispersions have been and continue to be one of the key technologies for solving the issue of poor solubility for newer hydrophobic molecules which are being discovered. This would give a new lease of life for such drugs enabling them to be delivered in an effective way.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1679
Author(s):  
Thao T.D. Tran ◽  
Phuong H.L. Tran

In recent decades, solid dispersions have been demonstrated as an effective approach for improving the bioavailability of poorly water-soluble drugs, as have solid dispersion techniques that include the application of nanotechnology. Many studies have reported on the ability to change drug crystallinity and molecular interactions to enhance the dissolution rate of solid dispersions using hydrophilic carriers. However, numerous studies have indicated that insoluble carriers are also promising excipients in solid dispersions. In this report, an overview of solid dispersion strategies involving insoluble carriers has been provided. In addition to the role of solubility and dissolution enhancement, the perspectives of the use of these polymers in controlled release solid dispersions have been classified and discussed. Moreover, the compatibility between methods and carriers and between drug and carrier is mentioned. In general, this report on solid dispersions using insoluble carriers could provide a specific approach and/or a selection of these polymers for further formulation development and clinical applications.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 379 ◽  
Author(s):  
Xiangyu Ma ◽  
Felix Müller ◽  
Siyuan Huang ◽  
Michael Lowinger ◽  
Xu Liu ◽  
...  

Amorphous solid dispersions (ASDs) are commonly used in the pharmaceutical industry to improve the dissolution and bioavailability of poorly water-soluble drugs. Hot melt extrusion (HME) has been employed to prepare ASD based products. However, due to the narrow processing window of HME, ASDs are normally obtained with high processing temperatures and mechanical stress. Interestingly, one-third of pharmaceutical compounds reportedly exist in hydrate forms. In this study, we selected carbamazepine (CBZ) dihydrate to investigate its solid-state changes during the dehydration process and the impact of the dehydration on the preparation of CBZ ASDs using a Leistritz micro-18 extruder. Various characterization techniques were used to study the dehydration kinetics of CBZ dihydrate under different conditions. We designed the extrusion runs and demonstrated that: 1) the dehydration of CBZ dihydrate resulted in a disordered state of the drug molecule; 2) the resulted higher energy state CBZ facilitated the drug solubilization and mixing with the polymer matrix during the HME process, which significantly decreased the required extrusion temperature from 140 to 60 °C for CBZ ASDs manufacturing compared to directly processing anhydrous crystalline CBZ. This work illustrated that the proper utilization of drug hydrates can significantly improve the processability of HME for preparing ASDs.


Sign in / Sign up

Export Citation Format

Share Document