scholarly journals Disrupting GPCR Complexes with Smart Drug-like Peptides

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 161
Author(s):  
Maria Gallo ◽  
Sira Defaus ◽  
David Andreu

G protein-coupled receptors (GPCRs) are a superfamily of proteins classically described as monomeric transmembrane (TM) receptors. However, increasing evidence indicates that many GPCRs form higher-order assemblies made up of monomers pertaining to identical (homo) or to various (hetero) receptors. The formation and structure of these oligomers, their physiological role and possible therapeutic applications raise a variety of issues that are currently being actively explored. In this context, synthetic peptides derived from TM domains stand out as powerful tools that can be predictably targeted to disrupt GPCR oligomers, especially at the interface level, eventually impairing their action. However, despite such potential, TM-derived, GPCR-disrupting peptides often suffer from inadequate pharmacokinetic properties, such as low bioavailability, a short half-life or rapid clearance, which put into question their therapeutic relevance and promise. In this review, we provide a comprehensive overview of GPCR complexes, with an emphasis on current studies using GPCR-disrupting peptides mimicking TM domains involved in multimerization, and we also highlight recent strategies used to achieve drug-like versions of such TM peptide candidates for therapeutic application.

2020 ◽  
Author(s):  
Alina Sultanova ◽  
Maksims Cistjakovs ◽  
Liba Sokolovska ◽  
Egils Cunskis ◽  
Modra Murovska

AbstractHuman herpesvirus 6 (HHV-6) is a human pathogen with a wide cell tropism and many immunomodulating properties. HHV-6 has been linked to the development of multiple diseases, among them – autoimmune. Conflicting evidence implicates HHV-6 in autoimmune thyroiditis (AIT). HHV-6 contains two genes (U12 and U51) that encode putative homologues of human G-protein-coupled receptors (GPCR) like CCR1, CCR3 and CCR5. It has been shown that proteins encoded by HHV-6 U12 and U51 genes can be expressed on the surface of epithelial and some peripheral blood mononuclear cells populations, which makes them a potential cause for evoking autoimmunity.The aim of this study was to identify potentially immunogenic synthetic peptides derived from HHV-6 U12 and U51 amino acid sequences and to find evidences of the possible involvement of these proteins in AIT development. 62 AIT patients positive for HHV-6 infection were enrolled in this study. 30 different synthetic peptides designed from HHV-6 U12 and U51 proteins’ amino acid sequences, as well as, recombinant human CCR1, CCR3 and CCR5 proteins were used for suspension multiplex immunological assay (SMIA) to detect specific IgG, and IgM antibodies.HHV-6 peptide specific IgG and IgM antibodies were found in patient’s samples, with higher signals for IgM antibodies, which is indicative of reactivation and active HHV-6 infection. As well recombinant CCR1 and CCR5 showed high signals on IgM antibodies which is indicating on the presence of potential auto-antibodies against human G protein-coupled receptors. No cross reactivity between HHV-6 peptide specific antibodies and human recombinant CCR1, CCR3 and CCR5 was found, however, the possibility of cross-reactive autoantibodies specific for structural epitopes cannot be excluded.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 450 ◽  
Author(s):  
Hassan Melhem ◽  
Berna Kaya ◽  
C. Korcan Ayata ◽  
Petr Hruz ◽  
Jan Hendrik Niess

Increasing evidence has indicated that diet and metabolites, including bacteria- and host-derived metabolites, orchestrate host pathophysiology by regulating metabolism, immune system and inflammation. Indeed, autoimmune diseases such as inflammatory bowel disease (IBD) are associated with the modulation of host response to diets. One crucial mechanism by which the microbiota affects the host is signaling through G protein-coupled receptors (GPCRs) termed metabolite-sensing GPCRs. In the gut, both immune and nonimmune cells express GPCRs and their activation generally provide anti-inflammatory signals through regulation of both the immune system functions and the epithelial integrity. Members of GPCR family serve as a link between microbiota, immune system and intestinal epithelium by which all these components crucially participate to maintain the gut homeostasis. Conversely, impaired GPCR signaling is associated with IBD and other diseases, including hepatic steatosis, diabetes, cardiovascular disease, and asthma. In this review, we first outline the signaling, function, expression and the physiological role of several groups of metabolite-sensing GPCRs. We then discuss recent findings on their role in the regulation of the inflammation, their existing endogenous and synthetic ligands and innovative approaches to therapeutically target inflammatory bowel disease.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Dehua Yang ◽  
Qingtong Zhou ◽  
Viktorija Labroska ◽  
Shanshan Qin ◽  
Sanaz Darbalaei ◽  
...  

AbstractAs one of the most successful therapeutic target families, G protein-coupled receptors (GPCRs) have experienced a transformation from random ligand screening to knowledge-driven drug design. We are eye-witnessing tremendous progresses made recently in the understanding of their structure–function relationships that facilitated drug development at an unprecedented pace. This article intends to provide a comprehensive overview of this important field to a broader readership that shares some common interests in drug discovery.


Sign in / Sign up

Export Citation Format

Share Document