scholarly journals Laser Self-Mixing Sensor for Simultaneous Measurement of Young’s Modulus and Internal Friction (Invited)

Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 550
Author(s):  
Bo Wang ◽  
Bin Liu ◽  
Lei An ◽  
Pinghua Tang ◽  
Haining Ji ◽  
...  

The Young’s modulus and internal friction are two important parameters of materials. Self-mixing interferometry (SMI) is an emerging non-destructive sensing method that has been employed for various applications because of its advantages of simple structure, ease of alignment and high resolution. Some recent works have proposed the use of SMI technology to measure the Young’s moduli and/or internal frictions by measuring the resonance frequencies and damping factors of specimen vibrations induced by impulse excitation. However, the measurement results may be affected by frequencies of SMI fringes, and the implementation requires extra signal processing on SMI fringes. In this work, we developed an all-fiber SMI system without SMI fringes to measure the Young’s modulus and internal friction simultaneously. Simulations and experiments were carried out to verify the feasibility of the proposed method. Two specimens of brass and aluminum were tested. The experimental results show that the standard deviations of Young’s moduli for brass and aluminum are 0.20 GPa and 0.14 GPa, and the standard deviations of internal frictions are 4.0×10−5 and 5.4×10−5, respectively. This method eliminates the influences of the SMI fringe frequency on the resonant frequency and requires no signal processing on SMI fringes, contributing to its simplicity as a method for the measurement of the Young’s modulus and internal friction.

Holzforschung ◽  
2002 ◽  
Vol 56 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Ugai Watanabe ◽  
Minoru Fujita ◽  
Misato Norimoto

Summary The relationship between transverse Young's moduli and cell shapes in coniferous early wood was investigated using cell models constructed by two dimensional power spectrum analysis. The calculated values of tangential Young's modulus qualitatively explained the relationship between experimental values and density as well as the difference in experimental values among species. The calculated values of radial Young's modulus for the species having hexagonal cells agreed well with the experimental values, whereas, for the species having square cells, the calculated values were much larger than the experimental values. This result was ascribed to the fact that the bending moment on the radial cell wall of square cell models was calculated to be small. It is suggested that the asymmetrical shape of real wood cells or the behavior of nodes during ell deformation is an important factor in the mechanism of linear elastic deformation of wood cells.


1984 ◽  
Vol 3 (4) ◽  
pp. 345-348 ◽  
Author(s):  
Ken'ichi Matsushita ◽  
Shusei Kuratani ◽  
Taira Okamoto ◽  
Masahiko Shimada

Sign in / Sign up

Export Citation Format

Share Document