scholarly journals Probing Trans-Electroweak First Order Phase Transitions from Gravitational Waves

Physics ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 92-102 ◽  
Author(s):  
Andrea Addazi ◽  
Antonino Marcianò ◽  
Roman Pasechnik

We propose direct tests of very high energy first-order phase transitions, which are elusive to collider physics, deploying the gravitational waves’ measurements. We show that first-order phase transitions lying in a large window of critical temperatures, which is considerably larger than the electroweak energy scale, can be tested from advanced LIGO (aLIGO) and the Einstein Telescope. This provides the possibility to probe several inflationary mechanisms ending with the inflaton in a false minimum and high-energy first order phase transitions that are due to new scalar bosons, beyond the Standard Model of particle physics. As an important example, we consider the axion monodromy inflationary scenario and analyze the potential for its experimental verification, deploying the gravitational wave interferometers.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Francesco Bigazzi ◽  
Alessio Caddeo ◽  
Aldo L. Cotrone ◽  
Angel Paredes

Abstract Spectra of stochastic gravitational waves (GW) generated in cosmological first-order phase transitions are computed within strongly correlated theories with a dual holographic description. The theories are mostly used as models of dark sectors. In particular, we consider the so-called Witten-Sakai-Sugimoto model, a SU(N) gauge theory coupled to different matter fields in both the fundamental and the adjoint representations. The model has a well-known top-down holographic dual description which allows us to perform reliable calculations in the strongly coupled regime. We consider the GW spectra from bubble collisions and sound waves arising from two different kinds of first-order phase transitions: a confinement/deconfinement one and a chiral symmetry breaking/restoration one. Depending on the model parameters, we find that the GW spectra may fall within the sensibility region of ground-based and space-based interferometers, as well as of Pulsar Timing Arrays. In the latter case, the signal could be compatible with the recent potential observation by NANOGrav. When the two phase transitions happen at different critical temperatures, characteristic spectra with double frequency peaks show up. Moreover, in this case we explicitly show how to correct the redshift factors appearing in the formulae for the GW power spectra to account for the fact that adiabatic expansion from the first transition to the present times cannot be assumed anymore.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Francesco Bigazzi ◽  
Alessio Caddeo ◽  
Aldo L. Cotrone ◽  
Angel Paredes

Abstract Using the holographic correspondence as a tool, we study the dynamics of first-order phase transitions in strongly coupled gauge theories at finite temperature. Considering an evolution from the large to the small temperature phase, we compute the nucleation rate of bubbles of true vacuum in the metastable phase. For this purpose, we find the relevant configurations (bounces) interpolating between the vacua and we compute the related effective actions. We start by revisiting the compact Randall-Sundrum model at high temperature. Using holographic renormalization, we compute the derivative term in the effective bounce action, that was missing in the literature. Then, we address the full problem within the top-down Witten-Sakai-Sugimoto model. It displays both a confinement/deconfinement and a chiral symmetry breaking/restoration phase transition which, depending on the model parameters, can happen at different critical temperatures. For the confinement/deconfinement case we perform the numerical analysis of an effective description of the transition and also provide analytic expressions using thick and thin wall approximations. For the chiral symmetry transition, we implement a variational approach that allows us to address the challenging non-linear problem stemming from the Dirac-Born-Infeld action.


2017 ◽  
Vol 32 (08) ◽  
pp. 1750049 ◽  
Author(s):  
Andrea Addazi

We discuss the possibility to indirectly test first-order phase transitions of hidden sectors. We study the interesting example of a Dark Standard Model (D-SM) with a deformed parameter space in the Higgs potential. A dark electroweak phase transition can be limited from next future experiments like eLISA and DECIGO.


2009 ◽  
Vol 24 (08n09) ◽  
pp. 1541-1544
Author(s):  
ARIEL MÉGEVAND

I discuss the gravitational radiation produced in a first-order phase transition due to the turbulence that is caused by bubble expansion. I compare the cases of deflagration and detonation bubbles.


2016 ◽  
Author(s):  
Kari Rummukainen ◽  
Stephan J Huber ◽  
Mark B. Hindmarsh ◽  
David Weir

2020 ◽  
Author(s):  
Yifan Wang ◽  
Rui Niu ◽  
Wen Zhao ◽  
Tao Zhu

Abstract Einstein's general relativity, as the most successful theory of gravity, is one of the cornerstones of modern physics. However, the experimental tests for gravity in the high energy region are limited. The emerging gravitational-wave astronomy has opened an avenue for probing the fundamental properties of gravity in strong and dynamical field, and in particular, high energy regime. In this work, we focus on the parity symmetry of gravity. For broken parity, the left- and right-handed modes of gravitational waves would follow different equations of motion, dubbed as birefringence. We perform the first full Bayesian inference of the parity conservation of gravity by comparing the state-of-the-art waveform with the compact binary coalescence data released by LIGO and Virgo collaboration. We do not find any violations of general relativity, thus obtain the lower bound of the parity-violating energy scale to be $0.09$ GeV through the velocity birefringence of gravitational waves. This provides the most stringent experimental test of gravitational parity symmetry up to date, and for the first time, in the high energy region, which ushers in a new era of using gravitational waves to test the ultraviolet behavior of gravity. We also find third-generation gravitational-wave detectors can enhance this bound to $\mathcal{O}(10^2)$ GeV if there is still no violation, comparable to the current LHC energy scale in particle physics.


Sign in / Sign up

Export Citation Format

Share Document