scholarly journals Local Regions with Expanding Extra Dimensions

Physics ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 781-789
Author(s):  
Kirill A. Bronnikov ◽  
Sergey G. Rubin

In this paper possible spatial domains, containing expanding extra dimensions, are studied. It is demonstrated that these domains are predicted in the framework of f(R) gravity (where R is the scalar curviture) and could appear due to quantum fluctuations during inflation. The interior of the domains is shown to be characterized by the multidimensional curvature ultimately tending to zero and a slowly growing size of the extra dimensions.

Nature ◽  
2020 ◽  
Vol 583 (7814) ◽  
pp. 31-32
Author(s):  
Valeria Sequino ◽  
Mateusz Bawaj

2018 ◽  
Vol 189 (01) ◽  
pp. 85-94
Author(s):  
Yuri N. Barabanenkov ◽  
Sergej A. Nikitov ◽  
Mikhail Yu. Barabanenkov

2021 ◽  
Vol 22 (3) ◽  
pp. 1328
Author(s):  
Rui Zhou ◽  
Yi Qin Gao

The recent development of sequencing technology and imaging methods has provided an unprecedented understanding of the inter-phase chromatin folding in mammalian nuclei. It was found that chromatin folds into topological-associated domains (TADs) of hundreds of kilo base pairs (kbps), and is further divided into spatially segregated compartments (A and B). The compartment B tends to be located near to the periphery or the nuclear center and interacts with other domains of compartments B, while compartment A tends to be located between compartment B and interacts inside the domains. These spatial domains are found to highly correlate with the mosaic CpG island (CGI) density. High CGI density corresponds to compartments A and small TADs, and vice versa. The variation of contact probability as a function of sequential distance roughly follows a power-law decay. Different chromosomes tend to segregate to occupy different chromosome territories. A model that can integrate these properties at multiple length scales and match many aspects is highly desired. Here, we report a DNA-sequence based coarse-grained block copolymer model that considers different interactions between blocks of different CGI density, interactions of TAD formation, as well as interactions between chromatin and the nuclear envelope. This model captures the various single-chromosome properties and partially reproduces the formation of chromosome territories.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Massimo Bianchi ◽  
Dario Consoli ◽  
Paolo Di Vecchia

Abstract We reconsider a modification of the N-point amplitude of the Neveu-Schwarz (NS) model in which the tachyon becomes a pion by shifting its mass to zero and keeping the super-projective invariance of the integrand of the amplitude. For the scattering of four particles it reduces to the amplitude written by Lovelace and Shapiro that has Adler zeroes. We confirm that also the N-pion amplitude has Adler zeroes and show that it reduces to that of the non-linear σ-model for α′ → 0 keeping Fπ fixed. The four- and six-point flavour-ordered amplitudes satisfy tree-level unitarity since they can be derived from the correspondent amplitudes of the NS model in ten dimensions by suitably choosing the components of the momenta of the external mesons in the six extra dimensions. Negative norm states (ghosts) are shown to appear instead in higher-point amplitudes. We also discuss several amplitudes involving different external mesons.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
A. de Giorgi ◽  
S. Vogl

Abstract The Kaluza-Klein (KK) decomposition of higher-dimensional gravity gives rise to a tower of KK-gravitons in the effective four-dimensional (4D) theory. Such massive spin-2 fields are known to be connected with unitarity issues and easily lead to a breakdown of the effective theory well below the naive scale of the interaction. However, the breakdown of the effective 4D theory is expected to be controlled by the parameters of the 5D theory. Working in a simplified Randall-Sundrum model we study the matrix elements for matter annihilations into massive gravitons. We find that truncating the KK-tower leads to an early breakdown of perturbative unitarity. However, by considering the full tower we obtain a set of sum rules for the couplings between the different KK-fields that restore unitarity up to the scale of the 5D theory. We prove analytically that these are fulfilled in the model under consideration and present numerical tests of their convergence. This work complements earlier studies that focused on graviton self-interactions and yields additional sum rules that are required if matter fields are incorporated into warped extra-dimensions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Doerte Kuhrt ◽  
Natalie R. St. John ◽  
Jacob L. S. Bellmund ◽  
Raphael Kaplan ◽  
Christian F. Doeller

AbstractAdvances in virtual reality (VR) technology have greatly benefited spatial navigation research. By presenting space in a controlled manner, changing aspects of the environment one at a time or manipulating the gain from different sensory inputs, the mechanisms underlying spatial behaviour can be investigated. In parallel, a growing body of evidence suggests that the processes involved in spatial navigation extend to non-spatial domains. Here, we leverage VR technology advances to test whether participants can navigate abstract knowledge. We designed a two-dimensional quantity space—presented using a head-mounted display—to test if participants can navigate abstract knowledge using a first-person perspective navigation paradigm. To investigate the effect of physical movement, we divided participants into two groups: one walking and rotating on a motion platform, the other group using a gamepad to move through the abstract space. We found that both groups learned to navigate using a first-person perspective and formed accurate representations of the abstract space. Interestingly, navigation in the quantity space resembled behavioural patterns observed in navigation studies using environments with natural visuospatial cues. Notably, both groups demonstrated similar patterns of learning. Taken together, these results imply that both self-movement and remote exploration can be used to learn the relational mapping between abstract stimuli.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Thomas G. Rizzo ◽  
George N. Wojcik

Abstract Extra dimensions have proven to be a very useful tool in constructing new physics models. In earlier work, we began investigating toy models for the 5-D analog of the kinetic mixing/vector portal scenario where the interactions of dark matter, taken to be, e.g., a complex scalar, with the brane-localized fields of the Standard Model (SM) are mediated by a massive U(1)D dark photon living in the bulk. These models were shown to have many novel features differentiating them from their 4-D analogs and which, in several cases, avoided some well-known 4-D model building constraints. However, these gains were obtained at the cost of the introduction of a fair amount of model complexity, e.g., dark matter Kaluza-Klein excitations. In the present paper, we consider an alternative setup wherein the dark matter and the dark Higgs, responsible for U(1)D breaking, are both localized to the ‘dark’ brane at the opposite end of the 5-D interval from where the SM fields are located with only the dark photon now being a 5-D field. The phenomenology of such a setup is explored for both flat and warped extra dimensions and compared to the previous more complex models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Betka Sophie ◽  
Łukowska Marta ◽  
Silva Marta ◽  
King Joshua ◽  
Garfinkel Sarah ◽  
...  

AbstractMany interoceptive tasks (i.e. measuring the sensitivity to bodily signals) are based upon heartbeats perception. However, the temporal perception of heartbeats—when heartbeats are felt—varies among individuals. Moreover, the spatial perception of heartbeats—where on the body heartbeats are felt—has not been characterized in relation to temporal. This study used a multi-interval heartbeat discrimination task in which participants judged the timing of their own heartbeats in relation to external tones. The perception of heartbeats in both time and spatial domains, and relationship between these domains was investigated. Heartbeat perception occurred on average ~ 250 ms after the ECG R-wave, most frequently sampled from the left part of the chest. Participants’ confidence in discriminating the timing of heartbeats from external tones was maximal at 0 ms (tone played at R-wave). Higher confidence was related to reduced dispersion of sampling locations, but Bayesian statistics indicated the absence of relationship between temporal and spatial heartbeats perception. Finally, the spatial precision of heartbeat perception was related to state-anxiety scores, yet largely independent of cardiovascular parameters. This investigation of heartbeat perception provides fresh insights concerning interoceptive signals that contribute to emotion, cognition and behaviour.


Sign in / Sign up

Export Citation Format

Share Document