scholarly journals An Update on Crop ABA Receptors

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1087
Author(s):  
Rafael Ruiz-Partida ◽  
Sttefany M. Rosario ◽  
Jorge Lozano-Juste

The hormone abscisic acid (ABA) orchestrates the plant stress response and regulates sophisticated metabolic and physiological mechanisms essential for survival in a changing environment. Plant ABA receptors were described more than 10 years ago, and a considerable amount of information is available for the model plant Arabidopsis thaliana. Unfortunately, this knowledge is still very limited in crops that hold the key to feeding a growing population. In this review, we summarize genomic, genetic and structural data obtained in crop ABA receptors. We also provide an update on ABA perception in major food crops, highlighting specific and common features of crop ABA receptors.

2021 ◽  
Vol 189 ◽  
pp. 112822
Author(s):  
Reinmar Eggers ◽  
Alexandra Jammer ◽  
Shalinee Jha ◽  
Bianca Kerschbaumer ◽  
Majd Lahham ◽  
...  

2020 ◽  
Vol 21 (15) ◽  
pp. 5371 ◽  
Author(s):  
Patrick Schall ◽  
Lucas Marutschke ◽  
Bernhard Grimm

Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential cofactors for enzymes, which catalyze a broad spectrum of vital reactions. This paper intends to compile all potential FAD/FMN-binding proteins encoded by the genome of Arabidopsis thaliana. Several computational approaches were applied to group the entire flavoproteome according to (i) different catalytic reactions in enzyme classes, (ii) the localization in subcellular compartments, (iii) different protein families and subclasses, and (iv) their classification to structural properties. Subsequently, the physiological significance of several of the larger flavoprotein families was highlighted. It is conclusive that plants, such as Arabidopsis thaliana, use many flavoenzymes for plant-specific and pivotal metabolic activities during development and for signal transduction pathways in response to biotic and abiotic stress. Thereby, often two up to several homologous genes are found encoding proteins with high protein similarity. It is proposed that these gene families for flavoproteins reflect presumably their need for differential transcriptional control or the expression of similar proteins with modified flavin-binding properties or catalytic activities.


2005 ◽  
Vol 274 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Alexander H. J. Wittenberg ◽  
Theo van der Lee ◽  
Cyril Cayla ◽  
Andrzej Kilian ◽  
Richard G. F. Visser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document