aba receptors
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 36)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Vol 23 ◽  
Author(s):  
Vidya Niranjan ◽  
Amulya Rao ◽  
B Janaki ◽  
Akshay Uttarkar ◽  
Anagha S Setlur ◽  
...  

Background: Abiotic stresses affect plants in several ways and as such, phytohormones such as abscisic acid (ABA) play an important role in conferring tolerance towards these stresses. Hence, to comprehend the role of ABA and its interaction with receptors of the plants, a thorough investigation is essential. Aim: The current study aimed to identify the ABA receptors in Oryza sativa, to find the receptor that binds best with ABA and to examine the mutations present to help predict better binding of the receptors with ABA Methods: Protein sequences of twelve PYL (Pyrabactin resistance 1) and seven PP2C (type 2C protein phosphatase) receptors were retrieved from Rice Annotation Project database and their 3D structures were predicted using RaptorX. Protein-ligand molecular docking studies between PYL and ABA was performed using AutoDock 1.5.6, followed by 100ns molecular dynamic simulation studies using Desmond to determine the acceptable conformational changes after docking via root mean square deviation RMSD plot analysis. Protein-protein docking was then carried out in three sets: PYL-PP2Cs, PYL-ABA-PP2C and PYL(mut)-ABA-PP2C to scrutinize changes in structural conformations and binding energies between complexes. The amino acids of interest were mapped at its respective genomic coordinates using SNP-seek database to ascertain if there were any naturally occurring single nucleotide polymorphisms (SNPs) responsible for triggering rice PYLs mutations Results: Initial protein-ligand docking studies revealed good binding between the complexes, wherein PYL6-ABA complex showed the best energy of -8.15 kcal/mol. The 100ns simulation studies revealed changes in the RMSD values after docking, indicating acceptable conformational changes. Furthermore, mutagenesis study performed at specific PYL-ABA interacting residues followed by downstream PYL(mut)-ABA-PP2C protein-protein docking results after induction of mutations demonstrated a binding energy of -8.17 kcal/mol for PP2C79-PYL11-ABA complex. No naturally occurring SNPs that were responsible for triggering rice PYL mutations were identified when specific amino acid coordinates were mapped at respective genomic coordinates. Conclusion: Thus, the present study provides valuable insights on the interactions of ABA receptors in rice and induced mutations in PYL11 that can enhance the downstream interaction with PP2C


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253812
Author(s):  
Xiao Zhang ◽  
Huifen Cao ◽  
Haiyan Wang ◽  
Runxuan Zhang ◽  
Haikuan Jia ◽  
...  

Graphene has shown great potential for improving growth of many plants, but its effect on woody plants remains essentially unstudied. In this work, Pinus tabuliformis Carr. bare-rooted seedlings grown outdoors in pots were irrigated with a graphene solution over a concentration range of 0–50 mg/L for six months. Graphene was found to stimulate root growth, with a maximal effect at 25 mg/L. We then investigated root microstructure and carried out transcript profiling of root materials treated with 0 and 25 mg/L graphene. Graphene treatment resulted in plasma-wall separation and destruction of membrane integrity in root cells. More than 50 thousand of differentially expressed genes (DEGs) were obtained by RNA sequencing, among which 6477 could be annotated using other plant databases. The GO enrichment analysis and KEGG pathway analysis of the annotated DEGs indicated that abiotic stress responses, which resemble salt stress, were induced by graphene treatment in roots, while responses to biotic stimuli were inhibited. Numerous metabolic processes and hormone signal transduction pathways were altered by the treatment. The growth promotion effects of graphene may be mediated by encouraging proline synthesis, and suppression of the expression of the auxin response gene SMALL AUXIN UP-REGULATED RNA 41 (SAUR41), PYL genes which encode ABA receptors, and GSK3 homologs.


2021 ◽  
Vol 22 (13) ◽  
pp. 7103
Author(s):  
Alberto Coego ◽  
Jose Julian ◽  
Jorge Lozano-Juste ◽  
Gaston A. Pizzio ◽  
Abdulwahed F. Alrefaei ◽  
...  

Post-translational modifications play a fundamental role in regulating protein function and stability. In particular, protein ubiquitylation is a multifaceted modification involved in numerous aspects of plant biology. Landmark studies connected the ATP-dependent ubiquitylation of substrates to their degradation by the 26S proteasome; however, nonproteolytic functions of the ubiquitin (Ub) code are also crucial to regulate protein interactions, activity, and localization. Regarding proteolytic functions of Ub, Lys-48-linked branched chains are the most common chain type for proteasomal degradation, whereas promotion of endocytosis and vacuolar degradation is triggered through monoubiquitylation or Lys63-linked chains introduced in integral or peripheral plasma membrane proteins. Hormone signaling relies on regulated protein turnover, and specifically the half-life of ABA signaling components is regulated both through the ubiquitin-26S proteasome system and the endocytic/vacuolar degradation pathway. E3 Ub ligases have been reported that target different ABA signaling core components, i.e., ABA receptors, PP2Cs, SnRK2s, and ABFs/ABI5 transcription factors. In this review, we focused specifically on the ubiquitylation of ABA receptors and PP2C coreceptors, as well as other post-translational modifications of ABA receptors (nitration and phosphorylation) that result in their ubiquitination and degradation.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1087
Author(s):  
Rafael Ruiz-Partida ◽  
Sttefany M. Rosario ◽  
Jorge Lozano-Juste

The hormone abscisic acid (ABA) orchestrates the plant stress response and regulates sophisticated metabolic and physiological mechanisms essential for survival in a changing environment. Plant ABA receptors were described more than 10 years ago, and a considerable amount of information is available for the model plant Arabidopsis thaliana. Unfortunately, this knowledge is still very limited in crops that hold the key to feeding a growing population. In this review, we summarize genomic, genetic and structural data obtained in crop ABA receptors. We also provide an update on ABA perception in major food crops, highlighting specific and common features of crop ABA receptors.


2021 ◽  
Vol 7 (12) ◽  
pp. eabd4113
Author(s):  
Rui Miao ◽  
Wei Yuan ◽  
Yue Wang ◽  
Irene Garcia-Maquilon ◽  
Xiaolin Dang ◽  
...  

The hab1-1abi1-2abi2-2pp2ca-1 quadruple mutant (Qabi2-2) seedlings lacking key negative regulators of ABA signaling, namely, clade A protein phosphatases type 2C (PP2Cs), show more apoplastic H+ efflux in roots and display an enhanced root growth under normal medium or water stress medium compared to the wild type. The presence of low ABA concentration (0.1 micromolar), inhibiting PP2C activity via monomeric ABA receptors, enhances root apoplastic H+ efflux and growth of the wild type, resembling the Qabi2-2 phenotype in normal medium. Qabi2-2 seedlings also demonstrate increased hydrotropism compared to the wild type in obliquely-oriented hydrotropic experimental system, and asymmetric H+ efflux in root elongation zone is crucial for root hydrotropism. Moreover, we reveal that Arabidopsis ABA-insensitive 1, a key PP2C in ABA signaling, interacts directly with the C terminus of Arabidopsis plasma membrane H+-dependent adenosine triphosphatase 2 (AHA2) and dephosphorylates its penultimate threonine residue (Thr947), whose dephosphorylation negatively regulates AHA2.


Author(s):  
Benderradji L ◽  
◽  
Saibi W ◽  
Brini F ◽  
◽  
...  

The Abscisic Acid (ABA) is an isoprenoid phytohormone, regulating various physiological processes ranging from stomatal opening to protein storage. Moreover, it provides adaptation to drought, salt and cold stresses acts also as a signaling mediator during the plant’s adaptive response to environmental conditions. In addition, numbers of transcription factors are involved in regulating the expression of ABA responsive genes by interacting with their respective cis-acting elements. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. Hence, for improvement in plants-stress-tolerance capacity, it is necessary to understand the mechanism behind it. On this ground, this article lightens the importance and also the role of ABA signaling with regard to various stresses as well as regulation of ABA biosynthetic pathway along with the transcription factors for stress tolerance.


Author(s):  
Chuankai Zhao ◽  
Diwakar Shukla

Phytohormone abscisic acid (ABA) is essential for plant responses to biotic and abiotic stresses. Dimeric receptors are a class of ABA receptors that are important for various ABA responses. While...


2020 ◽  
Vol 21 (21) ◽  
pp. 7854 ◽  
Author(s):  
Babar Usman ◽  
Gul Nawaz ◽  
Neng Zhao ◽  
Shanyue Liao ◽  
Yaoguang Liu ◽  
...  

Abscisic acid (ABA) is involved in regulating drought tolerance, and pyrabactin resistance-like (PYL) proteins are known as ABA receptors. To elucidate the role of one of the ABA receptors in rice, OsPYL9 was mutagenized through CRISPR/Cas9 in rice. Homozygous and heterozygous mutant plants lacking any off-targets and T-DNA were screened based on site-specific sequencing and used for morpho-physiological, molecular, and proteomic analysis. Mutant lines appear to accumulate higher ABA, antioxidant activities, chlorophyll content, leaf cuticular wax, and survival rate, whereas a lower malondialdehyde level, stomatal conductance, transpiration rate, and vascular bundles occur under stress conditions. Proteomic analysis found a total of 324 differentially expressed proteins (DEPs), out of which 184 and 140 were up and downregulated, respectively. The OsPYL9 mutants showed an increase in grain yield under both drought and well watered field conditions. Most of the DEPs related to circadian clock rhythm, drought response, and reactive oxygen species were upregulated in the mutant plants. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEPs were only involved in circadian rhythm and Gene Ontology (GO) analysis showed that most of the DEPs were involved in response to abiotic stimulus, and abscisic acid-activated signaling pathways. Protein GIGANTEA, Adagio-like, and Pseudo-response regulator proteins showed higher interaction in protein–protein interaction (PPI) network. Thus, the overall results showed that CRISPR/Cas9-generated OsPYL9 mutants have potential to improve both drought tolerance and the yield of rice. Furthermore, global proteome analysis provides new potential biomarkers and understandings of the molecular mechanism of rice drought tolerance.


Sign in / Sign up

Export Citation Format

Share Document