scholarly journals Reorganization of Protein Tyrosine Nitration Pattern Indicates the Relative Tolerance of Brassica napus (L.) over Helianthus annuus (L.) to Combined Heavy Metal Treatment

Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 902
Author(s):  
Gábor Feigl ◽  
Ádám Czifra ◽  
Árpád Molnár ◽  
Attila Bodor ◽  
Etelka Kovács ◽  
...  

Metal-polluted areas, especially where municipal sewage is used as fertilizer, often have high concentrations of more than one metal. The development of the root system is regulated by a complex signaling network, which includes reactive oxygen and nitrogen species. The delicate balance of the endogenous signal system can be affected by various environmental stimuli including heavy metals (HMs) in excess. Our goal was to analyze the microelement homeostasis, root architecture, and to determine the underlying changes in the nitro-oxidative status in the root system of rapeseed (Brassica napus L.) and sunflower (Helianthus annuus L.) subjected to combined HM treatments. The effect of model-sewage in two different layouts was simulated in rhizotron system by only supplementing the highest HM concentrations (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) legally allowed. The two species reacted differently to combined HM treatment; compared to the relatively sensitive sunflower, rapeseed showed better metal translocation capability and root growth even at the more severe treatment, where the pattern of protein tyrosine nitration was reorganized. The obtained results, especially the increased nitric oxide content and changed pattern of tyrosine nitration in rapeseed, can indicate acclimation and species-specific nitro-oxidative responses to combined HM stress.

2009 ◽  
Vol 60 (15) ◽  
pp. 4221-4234 ◽  
Author(s):  
Mounira Chaki ◽  
Raquel Valderrama ◽  
Ana M. Fernández-Ocaña ◽  
Alfonso Carreras ◽  
Javier López-Jaramillo ◽  
...  

2001 ◽  
Vol 281 (6) ◽  
pp. H2289-H2294 ◽  
Author(s):  
Illarion V. Turko ◽  
Sisi Marcondes ◽  
Ferid Murad

High levels of reactive species of nitrogen and oxygen in diabetes may cause modifications of proteins. Recently, an increase in protein tyrosine nitration was found in several diabetic tissues. To understand whether protein tyrosine nitration is the cause or the result of the associated diabetic complications, it is essential to identify specific proteins vulnerable to nitration with in vivo models of diabetes. In the present study, we have demonstrated that succinyl-CoA:3-oxoacid CoA-transferase (SCOT; EC 2.8.3.5 ) is susceptible to tyrosine nitration in hearts from streptozotocin-treated rats. After 4 and 8 wk of streptozotocin administration and diabetes progression, SCOT from rat hearts had a 24% and 39% decrease in catalytic activity, respectively. The decrease in SCOT catalytic activity is accompanied by an accumulation of nitrotyrosine in SCOT protein. SCOT is a mitochondrial matrix protein responsible for ketone body utilization. Ketone bodies provide an alternative source of energy during periods of glucose deficiency. Because diabetes results in profound derangements in myocardial substrate utilization, we suggest that SCOT tyrosine nitration is a contributing factor to this impairment in the diabetic heart.


Sign in / Sign up

Export Citation Format

Share Document