scholarly journals Simulated Photovoltaic Solar Panels Alter the Seed Bank Survival of Two Desert Annual Plant Species

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1125
Author(s):  
Rebecca R. Hernandez ◽  
Karen E. Tanner ◽  
Sophia Haji ◽  
Ingrid M. Parker ◽  
Bruce M. Pavlik ◽  
...  

Seed bank survival underpins plant population persistence but studies on seed bank trait-environment interactions are few. Changes in environmental conditions relevant to seed banks occur in desert ecosystems owing to solar energy development. We developed a conceptual model of seed bank survival to complement methodologies using in-situ seed bank packets. Using this framework, we quantified the seed bank survival of two closely related annual desert plant species, one rare (Eriophyllum mohavense) and one common (Eriophyllum wallacei), and the seed bank–environment interactions of these two species in the Mojave Desert within a system that emulates microhabitat variation associated with solar energy development. We tracked 4860 seeds buried across 540 seed packets and found, averaged across both species, that seed bank survival was 21% and 6% for the first and second growing seasons, respectively. After two growing seasons, the rare annual had a significantly greater seed bank survival (10%) than the common annual (2%). Seed bank survival across both species was significantly greater in shade (10%) microhabitats compared to runoff (5%) and control microhabitats (3%). Our study proffers insight into this early life-stage across rare and common congeners and their environmental interactions using a novel conceptual framework for seed bank survival.

Author(s):  
Rebecca R. Hernandez ◽  
Karen Tanner ◽  
Sophia Haji ◽  
Ingrid Parker ◽  
Bruce Pavlik ◽  
...  

Seed bank survival underpins plant population persistence but studies on seed bank trait-environment interactions are few. Changes in environmental conditions relevant to seed banks occur in desert ecosystems owing to solar energy development. We developed a conceptual model of seed bank survival to complement methodologies using in-situ seed bank packets. Using this framework, we quantified the seed bank survival of two closely related annual desert plant species, one rare (Eriophyllum mohavense) and one common (Eriophyllum wallacei) and the seed bank-environment interactions of these two species in the Mojave Desert within a system that emulates microhabitat variation associated with solar energy development. We tracked 4,860 seeds buried across 540 seed packets and found, averaged across both species, that seed bank survival was 21% and 6% for the first and second growing seasons, respectively. After two growing seasons, the rare annual had a significantly greater seed bank survival (10%) than the common annual (2%). Seed bank survival, across both species, was significantly greater in Shade (10%) microhabitats compared to Runoff (5%) microhabitats and Control microhabitats (3%). Our study confers insight into this early life-stage across rare and common congeners and their environmental interactions using a novel conceptual framework for seed bank survival.


2021 ◽  
Author(s):  
Steven M. Grodsky ◽  
Rebecca R. Hernandez

<p>Deserts are prioritized as recipient environments for solar energy development; however, the impacts of this development on desert plant communities are unknown. Desert plants represent long-standing ecological, economic and cultural resources for humans, especially indigenous peoples, but their role in supplying ecosystem services (ESs) remains understudied. We measured the effect of solar energy development decisions on desert plants at one of the world’s largest concentrating solar power plants (Ivanpah, California; capacity of 392 MW). We documented the negative effects of solar energy development on the desert scrub plant community. Perennial plant cover and structure are lower in bladed treatments than mowed treatments, which are, in turn, lower than the perennial plant cover and structure recorded in undeveloped controls. We determined that cacti species and Mojave yucca (Yucca schidigera) are particularly vulnerable to solar development (that is, blading, mowing), whereas Schismus spp.—invasive annual grasses—are facilitated by blading. The desert scrub community confers 188 instances of ESs, including cultural services to 18 Native American ethnic groups. Cultural, provisioning and regulating ESs of desert plants are lower in bladed and mowed treatments than in undeveloped controls. Our study demonstrates the potential for solar energy development in deserts to reduce biodiversity and socioecological resources, as well as the role that ESs play in informing energy transitions that are sustainable and just.</p>


2021 ◽  
Vol 263 ◽  
pp. 109336
Author(s):  
Steven M. Grodsky ◽  
Joshua W. Campbell ◽  
Rebecca R. Hernandez

2021 ◽  
Author(s):  
Patrick M. Graham ◽  
James S. Franks ◽  
Evan J. Anderson ◽  
Robert T. Leaf ◽  
Jason D. Tilley

2021 ◽  
Author(s):  
Shulin Wang ◽  
Fujiang Hou

Abstract Aims Viable seeds in herbivore dung constitute the dung seed bank, and the contribution of livestock dung to this seed bank in grazing pastures is often overlooked. Grazing season (warm and cold), seed characteristics (size and shape), and forage preference are the main factors that affect the size and composition of the dung seed bank and ultimately affect grassland ecology. However, how these three factors interact is unclear. Methods We collected yak dung as well as seeds of the common plant species from warm- and cold-season alpine meadows in northeastern Qinghai-Tibetan Plateau, and explored how grazing season (warm and cold), seed characteristics (size and shape) and foraging preferences (temporary cages method) affects yak dung seedling density, richness and diversity in an alpine pasture. Results Forty-three plant species (mainly perennials) germinated from yak dung. Dung seedling density, richness, and diversity did not differ significantly between the two grazing seasons. Small to medium-sized spherical seeds (seed size < 10 mg, shape index < 0.5) had the greatest germination potential. Conclusions Yaks vary their forage preference depending on the season (phenological period), and endozoochory occurs throughout both grazing seasons. Seed shape and size directly regulate the dung seedling density, richness, and diversity. Dung seedlings increase the heterogeneity of the aboveground vegetation near the microsites of the dung pieces and therefore promote grassland patching. Our study demonstrates that grazing season, seed characteristics, and yak forage preferences affect the dung seed bank in grazing ecosystems.


Sign in / Sign up

Export Citation Format

Share Document