scholarly journals Reversible Assembly of Terpyridine Incorporated Norbornene-Based Polymer via a Ring-Opening Metathesis Polymerization and Its Self-Healing Property

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1173 ◽  
Author(s):  
Jookyeong Lee ◽  
Hwi Moon ◽  
Keewook Paeng ◽  
Changsik Song

We induced a terpyridine moiety into a norbornene-based polymer to demonstrate its self-healing property, without an external stimulus, such as light, heat, or healing agent, using metal–ligand interactions. We synthesized terpyridine incorporated norbornene-based polymers using a ring-opening metathesis polymerization. The sol state of diluted polymer solutions was converted into supramolecular assembled gels, through the addition of transition metal ions (Ni2+, Co2+, Fe2+, and Zn2+). In particular, a supramolecular complex gel with Zn2+, which is a metal with a lower binding affinity, demonstrated fast self-healing properties, without any additional external stimuli, and its mechanical properties were completely recovered.

MRS Bulletin ◽  
2008 ◽  
Vol 33 (8) ◽  
pp. 759-765 ◽  
Author(s):  
Kyle A. Williams ◽  
Daniel R. Dreyer ◽  
Christopher W. Bielawski

AbstractOver the past ten years, a broad range of self-healing materials, systems that can detect when they have been damaged and heal themselves either spontaneously or with the aid of a stimulus, has emerged. Although many unique compositions and components are used to create these materials, they all employ basic chemical reactions to facilitate repair processes. Kinetically controlled ring-opening reactions and reversible metal–ligand interactions have proven useful in autonomic self-healing materials, which require no stimulus (other than the formation of damage) for operation. In contrast, nonautonomic self-healing materials, which require some type of externally applied stimulus (such as heat or light) to enable healing functions, have capitalized on chemistries that utilize either reversible covalent bonds or various types of noncovalent interactions. This review describes the underlying chemistries used in state-of-the-art self-healing materials, as well as those currently in development.


2008 ◽  
Vol 20 (10) ◽  
pp. 3288-3297 ◽  
Author(s):  
Gerald O. Wilson ◽  
Mary M. Caruso ◽  
Neil T. Reimer ◽  
Scott R. White ◽  
Nancy R. Sottos ◽  
...  

2011 ◽  
Author(s):  
Robert H. Lambeth ◽  
Joseph M. Dougherty ◽  
Joshua A. Orlicki ◽  
Adam M. Rawlett ◽  
Robert C. Hoffman ◽  
...  

Author(s):  
David J. Hayne ◽  
Filip Stojcevski ◽  
Daniel B. Knorr ◽  
Ngon T. Tran ◽  
Luke C. Henderson

Sign in / Sign up

Export Citation Format

Share Document