scholarly journals Composite Sulfonated Polyether-Ether Ketone Membranes with SBA-15 for Electrochemical Energy Systems

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1570 ◽  
Author(s):  
A. Rico-Zavala ◽  
J. L. Pineda-Delgado ◽  
A. Carbone ◽  
A. Saccà ◽  
E. Passalacqua ◽  
...  

The aim of this work is the evaluation of a Sulfonated Poly Ether-Ether Ketone (S-PEEK) polymer modified by the addition of pure Santa Barbara Amorphous-15 (SBA-15, mesoporous silica) and SBA-15 previously impregnated with phosphotungstic acid (PWA) fillers (PWA/SBA-15) in order to prepare composite membranes as an alternative to conventional Nafion® membranes. This component is intended to be used as an electrolyte in electrochemical energy systems such as hydrogen and methanol Proton Exchange Membrane Fuel Cell (PEMFC) and Electrochemical Hydrogen Pumping (EHP). The common requirements for all the applications are high proton conductivity, thermomechanical stability, and fuel and oxidant impermeability. The morphology of the composite membranes was investigated by Scanning Electron Microscopy- Energy Dispersive X-ray Spectroscopy (SEM-EDS) analysis. Water Uptake (Wup), Ion Exchange Capacity (IEC), proton conductivity, methanol permeability and other physicochemical properties were evaluated. In PEMFC tests, the S-PEEK membrane with a 10 wt.% SBA-15 loading showed the highest performance. For EHP, the inclusion of inorganic materials led to a back-diffusion, limiting the compression capacity. Concerning methanol permeability, the lowest methanol crossover corresponded to the composites containing 5 wt.% and 10 wt.% SBA-15.

2015 ◽  
Vol 14 (01n02) ◽  
pp. 1460016 ◽  
Author(s):  
Jun Ma ◽  
Dongyun Su ◽  
Hongjun Ni ◽  
Mingyu Huang ◽  
Xingxing Wang

A variety of modification approaches such as cross-linking and nano blending have been explored to prepare efficient membranes based on Sulfonated polyether ether ketone (SPEEK). The addition filler is also one of the most widely used approaches to modify the SPEEK. The crosslinked membranes were utilized as proton exchange membranes (PEM) for fuel cell application. The performances of these composite membranes were comparative researched in terms of water uptake, ion exchange capacity, proton conductivity, and methanol permeability.While the nanohybrid membranes display remarkably enhanced proton conduction property due to the incorporation of additional sites for proton transport and the formation of well-connected channels by bridging the hydrophilic domains in SPEEK matrix. The as-prepared nanohybrid membranes also show elevated thermal and mechanical stabilities as well as decreased methanol permeability.


2018 ◽  
Vol 31 (5) ◽  
pp. 528-537 ◽  
Author(s):  
Zhi Shao ◽  
Chengji Zhao

A series of side-chain-type sulfonated poly(arylene ether ketone)s with high ion exchange capacity (IEC) values were prepared by polycondensation reaction of 4,4′-difluorobenzophenone with 2,2′-bis(3-amino-4-hydroxyphenyl) and bisphenol A, followed by post-grafting reaction using 1,4-butanesultone. For these obtained membranes, sulfoalkylamine functionalized poly(ether ether ketone) (SAm-PEEK)-0.8 with the highest IEC of 3.42 mequiv. g−1 displayed the highest proton conductivity of 0.11 S cm−1 at 25°C and 0.167 S cm−1 at 60°C, respectively. The morphology of these membranes was investigated by transmission electron microscope analysis. The result showed that these membranes exhibited well-connected hydrophilic channels due to their high IEC values and densely populated flexible acid side chains. Owing to their low methanol permeability and high selectivity, SAm-PEEK- x membranes are promising candidates for direct methanol fuel cell applications.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1287 ◽  
Author(s):  
Wenmeng Zhang ◽  
Shaoyun Chen ◽  
Dongyang Chen ◽  
Zhuoliang Ye

Sterically hindered (S)-1,1′-binaphthyl-2,2′-diol had been successfully copolymerized with 4,4′-sulfonyldiphenol and 4,4′-difluorobenzophenone to yield fibrous poly(arylene ether ketone)s (PAEKs) containing various amounts of binaphthyl unit, which was then selectively and efficiently sulfonated using ClSO3H to yield sulfonated poly(arylene ether ketone)s (SPAEKs) with ion exchange capacities (IECs) ranging from 1.40 to 1.89 mmol·g−1. The chemical structures of the polymers were confirmed by 2D 1H–1H COSY NMR and FT-IR. The thermal properties, water uptake, swelling ratio, proton conductivity, oxidative stability and mechanical properties of SPAEKs were investigated in detail. It was found that the conjugated but non-coplanar structure of binaphthyl unit endorsed excellent solubility and film-forming capability to SPAEKs. The SPAEK-50 with an IEC of 1.89 mmol·g−1 exhibited a proton conductivity of 102 mS·cm−1 at 30 °C, much higher than that of the state-of-the-art Nafion N212 membrane and those of many previously reported aromatic analogs, which may be attributed to the likely large intrinsic free volume of SPAEKs created by the highly twisted chain structures and the desirable microscopic morphology. Along with the remarkable water affinity, thermal stabilities and mechanical properties, the SPAEKs were demonstrated to be promising proton exchange membrane (PEM) candidates for potential membrane separations.


2016 ◽  
Vol 1 (1) ◽  
pp. 14
Author(s):  
Siti Wafiroh ◽  
Suyanto Suyanto ◽  
Yuliana Yuliana

AbstrakDi era globalisasi ini, kebutuhan bahan bakar fosil semakin meningkat dan ketersediannya semakin menipis. Oleh karena itu, dibutuhkan bahan bakar alternatif seperti Proton Exchange Membrane Fuel Cell (PEMFC). Tujuan dari penelitian ini adalah membuat dan mengkarakterisasi membran komposit kitosan-sodium alginat dari rumput laut coklat (Sargassum sp.) terfosforilasi sebagai Proton Exchange Membrane Fuel Cell (PEMFC). PEM dibuat dengan 4 variasi perbandingan konsentrasi antara kitosan dengan sodium alginat 8:0, 8:1, 8:2, dan 8:4 (b/b). Membran komposit kitosan-sodium alginat difosforilasi dengan STPP 2N. Karakterisasi PEM meliputi: uji tarik, swelling air, kapasitas penukar ion, FTIR, SEM, permeabilitas metanol, dan konduktivitas proton. Berdasarkan hasil analisis tersebut, membran yang optimal adalah perbandingan 8:1 (b/b) dengan nilai modulus young sebesar 0,0901 kN/cm2, swelling air sebesar 19,14 %, permeabilitas metanol sebesar 72,7 x 10-7, dan konduktivitas proton sebesar 4,7 x 10-5 S/cm. Membran komposit kitosan-sodium alginat terfosforilasi memiliki kemampuan yang cukup baik untuk bisa diaplikasikan sebagai membran polimer elektrolit dalam PEMFC. Kata kunci: kitosan, sodium alginat, terfosforilasi, PEMFC  AbstractIn this globalization era, the needs of fossil fuel certainly increases, but its providence decreases. Therefore, we need alternative fuels such as Proton Exchange Membrane Fuel Cell (PEMFC). The purpose of this study is preparationand characterization of phosphorylated chitosan-sodium alginate composite membrane from brown seaweed (Sargassum sp.) as Proton Exchange Membrane Fuel Cell (PEMFC). PEM is produced with 4 variations of concentration ratio between chitosan and sodium alginate 8:0, 8:1, 8:2, and 8:4 (w/w). Chitosan-sodium alginate composite membrane phosphorylated with 2 N STPP. The characterization of PEM include: tensile test, water swelling, ion exchange capacity, FTIR, SEM, methanol permeability, and proton conductivity. Based on the analysis result, the optimal membrane is ratio of 8:1 (w/w) with the value of Young’s modulus about 0.0901 kN/cm2, water swelling at 19.14%, methanol permeability about 72.7 x 10-7, and proton conductivity about 4.7 x 10-5 S/cm. The phosphorylated chitosan-sodium alginate composite membrane has good potentials for the application of the polymer electrolyte membrane in PEMFC. Keywords: chitosan, sodium alginate, phosphorylated, PEMFC


2021 ◽  
pp. 095400832110394
Author(s):  
Yan Ma ◽  
Kaixu Ren ◽  
Ziqiu Zeng ◽  
Mengna Feng ◽  
Yumin Huang

To improve the performances of sulfonated poly (arylene ether nitrile) (SPEN)–based proton exchange membranes (PEMs) in direct methanol fuel cells (DMFCs), the copper phthalocyanine grafted graphene oxide (CP-GO) was successfully prepared via in situ polymerization and subsequently incorporated into SPEN as filler to fabricate a series of SPEN/CP-GO-X (X represents for the mass ratio of CP-GO) composite membranes. The water absorption, swelling ratio, mechanical properties, proton conductivity, and methanol permeability of the membranes were systematically studied. CP-GO possesses good dispersion and compatibility with SPEN matrix, which is propitious to the formation of strong interfacial interactions with the SPEN, so as to provide more efficient transport channels for proton transfer in the composite membranes and significantly improve the proton conductivity of the membranes. Besides, the strong π–π conjugation interactions between CP-GO and SPEN matrix can make the composite membranes more compact, blocking the methanol transfer in the membranes, and significantly reducing the methanol permeability. Consequently, the SPEN/CP-GO-1 composite membrane displayed outstanding tensile strength (58 MPa at 100% RH and 25°C), excellent proton conductivity (0.178 S cm−1 at 60°C), and superior selectivity (5.552 × 105 S·cm−3·s). This study proposed a new method and strategy for the preparation of high performance PEMs.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 914 ◽  
Author(s):  
Lucia Mazzapioda ◽  
Stefania Panero ◽  
Maria Assunta Navarra

Nafion composite membranes, containing different amounts of mesoporous sulfated titanium oxide (TiO2-SO4) were prepared by solvent-casting and tested in proton exchange membrane fuel cells (PEMFCs), operating at very low humidification levels. The TiO2-SO4 additive was originally synthesized by a sol-gel method and characterized through x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and ion exchange capacity (IEC). Peculiar properties of the composite membranes, such as the thermal transitions and ion exchange capacity, were investigated and here discussed. When used as an electrolyte in the fuel cell, the composite membrane guaranteed an improvement with respect to bare Nafion systems at 30% relative humidity and 110 °C, exhibiting higher power and current densities.


2012 ◽  
Vol 724 ◽  
pp. 412-415
Author(s):  
Md. Awlad Hossain ◽  
Young Don Lim ◽  
Dong Wan Seo ◽  
Soon Ho Lee ◽  
Hyun Chul Lee ◽  
...  

Sulfonated poly (diphenyl ether ketone sulfone) s, SPDPEKSs were successfully synthesized for proton exchange membranes (PEMs). Poly (diphenyl ether ketone sulfone) s, PDPEKSs were prepared by the polycondensation of 4,4'-sulfonyldiphenol with 1,2-bis (4-fluorobenzoyl)-3,6-diphenylbenzene (BFBDPB) and 4-fluorophenylsulfone respectively, at 210 °C using anhydrous potassium carbonate as catalyst in sulfolane. PDPEKSs were followed by sulfonation using chlorosulfonic acid and concentrated sulfuric acid at two step reactions. Different contents of sulfonated unit of SPDPEKS (25, 35, 45 mol% of BFBDPB) were studied by FT-IR, 1H NMR spectroscopy, and thermogravimetric analysis (TGA). The ion exchange capacity (IEC), water uptake and proton conductivity of SPDPEKS were evaluated with increase of degree of sulfonation.


2005 ◽  
Vol 885 ◽  
Author(s):  
Barbara Mecheri ◽  
Alessandra D'Epifanio ◽  
Maria Luisa Di Vona ◽  
Enrico Traversa ◽  
Silvia Licoccia ◽  
...  

ABSTRACTComposite membranes, prepared by mixing sulfonated polyether ether ketone (SPEEK) and WO3·2H2O in dimethylacetamide, were characterized by Thermogravimetry, Electrochemical Impedance Spectroscopy and Water Uptake measurements to evaluate their possible performance as proton exchange membranes (PEM). The body of results indicated the existence of a coordinative interaction between the water molecules of tungsten oxide and the sulfonic acid (-SO3H) groups of SPEEK. Moreover, EIS data demonstrated that the proton conductivity of the composite membranes is higher than both that of pure SPEEK and pure tungsten oxide, suggesting the presence of ion-rich regions where the proton transfer is favored. The SO3H - H2O interaction not only lead to enhancement of the proton conductivity of the membranes but also to improvement of their heat resistance as well as to decrease their water solubility.


2018 ◽  
Vol 762 ◽  
pp. 186-191
Author(s):  
Anna Trubača-Boginska ◽  
Rūta Ādiņa ◽  
Guntars Vaivars ◽  
Janis Švirksts

The acidification and intercalation of illite containing clays were studied for potential use as fillers for sulphonated poly (ether ether ketone) (SPEEK) composite membrane preparation and future proton exchange membrane fuel cells application. The acidification and dimethyl sulfoxide (DMSO) intercalation of illite clays have been studied by powder X-ray diffractometry, X-ray fluorescence spectrometry, and thermogravimetric analysis. SPEEK composite membranes were made with 1, 3 and 5% purified, acidified, DMSO intercalated clay fillers. SPEEK/clay composite membranes were characterized by proton conductivity, water uptake, and mechanical strength.


RSC Advances ◽  
2015 ◽  
Vol 5 (7) ◽  
pp. 4934-4940 ◽  
Author(s):  
Xianlin Xu ◽  
Li Li ◽  
Hang Wang ◽  
Xiaojie Li ◽  
Xupin Zhuang

The incorporation of SPEEK nanofibers into a Nafion matrix enhanced the performance of the composite membrane as a proton exchange membrane.


Sign in / Sign up

Export Citation Format

Share Document