scholarly journals A Novel Method for Deposition of Multi-Walled Carbon Nanotubes onto Poly(p-Phenylene Terephthalamide) Fibers to Enhance Interfacial Adhesion with Rubber Matrix

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 374 ◽  
Author(s):  
Xuan Yang ◽  
Qunzhang Tu ◽  
Xinmin Shen ◽  
Pengxiao Zhu ◽  
Yi Li ◽  
...  

In order to enhance the interfacial adhesion of poly(p-phenylene terephthalamide) (PPTA) fibers to the rubber composites, a novel method to deposit multi-walled carbon nanotubes (MWCNTs) onto the surface of PPTA fibers has been proposed in this study. This chemical modification was performed through the introduction of epoxy groups by Friedel–Crafts alkylation on the PPTA fibers, the carboxylation of MWCNTs, and the ring-opening reaction between the epoxy groups and the carboxyl groups. The morphologies, chemical structures, and compositions of the surface of PPTA fibers were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The results showed that MWCNTs were uniformly deposited onto the surface of PPTA fibers with the covalent bonds. The measurement of contact angles of the fibers with polar solvent and non-polar solvent indicated that the surface energy of deposited fibers significantly increased by 41.9% compared with the untreated fibers. An electronic tensile tester of single-filament and a universal testing machine were utilized to measure the strength change of the fibers after modification and the interfacial adhesion between the fibers and the rubber matrix, respectively. The results showed that the tensile strength had not been obviously reduced, and the pull-out force and peeling strength of the fibers to the rubber increased by 46.3% and 56.5%, respectively.

2013 ◽  
Vol 284-287 ◽  
pp. 204-210
Author(s):  
Yi Ming Jen ◽  
Chien Yang Huang

This study experimentally analyzed the hygrothermal effect on the static and fatigue strengths of acid-treated multi-walled carbon nanotubes (CNTs)/epoxy composites. The nanocomposite specimens with various CNT contents (0., 0.5, and 1.0 wt.%) were statically and fatigue-tested under three different hygrothermal conditions (25 °C/60% RH, 25° C/85% RH, and 40 °C/85% RH) to investigate the influences of hygrothermal conditions and CNT contents on the tensile static and fatigue strengths of the studied nanocomposites. The results show that the static and fatigue strengths decreased slightly at 25 °C/85% RH environments compared with those tested under the 25 °C/60% RH condition. However, the static and fatigue strengths of the studied nanocomposites decreased substantially under the 40 °C/85% RH condition. The combined temperature and humidity environments weaken the interfacial adhesion between the CNT surfaces and the epoxy matrix. Moreover, the experimental results show that the addition of 0.5 wt.% of carbon nanotubes improved the static and fatigue strengths considerably under the same hygrothermal environments. However, when an excessive amount of CNTs was used (1.0 wt.%), the nanocomposite exhibited the lowest strengths compared with the specimens with 0 and 0.5 wt.% CNTs. The stress concentration effect caused by the CNT aggregates was detrimental to the static and fatigue strengths of the studied nanocomposites.


2013 ◽  
Vol 8 (1) ◽  
pp. 30 ◽  
Author(s):  
Makoto Ohnishi ◽  
Hirofumi Yajima ◽  
Tatsuya Kasai ◽  
Yumi Umeda ◽  
Masahiro Yamamoto ◽  
...  

2014 ◽  
Vol 548-549 ◽  
pp. 118-123 ◽  
Author(s):  
Li Fei Chen ◽  
Min Cheng ◽  
De Jun Yang ◽  
Lei Yang

This study investigates the synergistic effect of combining multi-walled carbon nanotubes (MWNTs) and Fe2O3nanoparticles on thermal conductivity of nanofluid. Results show that low percentage hybrid fillers loading improve thermal conductivity of water based nanofluid, due to the good dispersion and interfacial adhesion, which is confirmed by scanning electron microscope. Furthermore, the hybrid fillers provide synergistic effect on heat conductive networks. The thermal conductivity enhancement of water based nanofluid containing 0.05 wt % MWNTs and 0.02 wt % Fe2O3nanoparticles is 27.75%, which is higher than that of nanofluid containing 0.2 wt % single MWNTs or Fe2O3nanoparticles.


2019 ◽  
Vol 53 (22) ◽  
pp. 3157-3168 ◽  
Author(s):  
Milind Shashikant Tamore ◽  
Debdatta Ratna ◽  
Satyendra Mishra ◽  
Navinchandra Gopal Shimpi

Ethyl-4-aminocinnamate functionalized multi-walled carbon nanotubes–reinforced silicone rubber nanocomposites were developed by means of compounding (two roll-mill) and molding (compression). Meanwhile, multi-walled carbon nanotubes were synthesized using a catalytic chemical vapor deposition technique and functionalized using ethyl-4-aminocinnamate. The as-synthesized and functionalized multi-walled carbon nanotubes were subjected to Raman spectroscopy, Fourier-transform infrared spectroscopy, field emission scanning electron microscope, and transmission electron microscopy to know the presence of the functional group with its shape and size. Further, silicone rubber nanocomposites were subjected to study its mechanical (tensile strength, Young's modulus, and elongation at break), thermal (stability), and physical (swelling index and hardness) properties. The amount of loading of functionalized multi-walled carbon nanotubes was from 0 to 1 wt%. It was observed that with the increase in the amount of functionalized multi-walled carbon nanotubes loading, the properties were found to be increased. This improvement was due to uniform dispersion with the alignment of functionalized multi-walled carbon nanotubes inside the rubber matrix. Moreover, this improvement was due to weak functionalizing materials which make the surface smooth and glossy so as to facilitate uniform dispersion of materials. Also, thermal stability was found to be increased due to shifting of heat uniformly throughout the rubber matrix. Certainly, it reduces the swelling indices of silicone rubber as the chains are closely packed which does not allow a solution to get penetrated. This improvement in properties of silicone rubber nanocomposites was reflected from field emission scanning electron microscope, which shows uniform dispersion with the alignment of functionalized multi-walled carbon nanotubes inside the rubber matrix.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1231 ◽  
Author(s):  
Xuan Yang ◽  
Qunzhang Tu ◽  
Xinmin Shen ◽  
Qin Yin ◽  
Ming Pan ◽  
...  

To enhance the interfacial adhesion between poly(p-phenylene terephthalamide) (PPTA) fibers and a rubber matrix without damaging the fiber structures, aminated carbon nanotubes (NH2-CNTs) were mildly deposited onto the fiber surface by combining the biomimetic modification of dopamine via the Michael addition reaction. Furthermore, differences between the “one-step” method and the “two-step” method were researched through adjusting the addition sequence of NH2-CNTs. The surface morphologies and chemical structures of PPTA fibers before and after modification were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The mechanical properties of fibers and the adhesive properties with rubber were tested using an electronic tensile tester of single-filament and universal testing machine, respectively. After modification by the “one-step” method for 24 h, the single-filament tensile strength of the modified fibers increased by 16.5%, meanwhile, the pull-out force of the modified fibers to rubber increased by approximately 59.7%. Compared with the “two-step” method, the “one-step” method had superiority due to the short reaction time and the large deposition rate of CNTs.


Author(s):  
С.Н. Несов ◽  
П.М. Корусенко ◽  
В.В. Болотов ◽  
К.Е. Ивлев ◽  
Е.В. Черников ◽  
...  

Using scanning electron microscopy (SEM) and X-ray spectroscopy, we studied the effect of processing multi-walled carbon nanotubes (MWCNTs) with a continuous beam of argon ions on the structure of SnOx/MWCNT composites formed by magnetron sputtering. It has been shown that the use of ion treatment increases interfacial adhesion and allows the formation of composites with a uniform distribution of tin oxide on the surface of carbon nanotubes in the form of continuous layers with a uniform structure


Acta Naturae ◽  
2011 ◽  
Vol 3 (1) ◽  
pp. 99-106 ◽  
Author(s):  
E A Smirnova ◽  
A A Gusev ◽  
O N Zaitseva ◽  
E M Lazareva ◽  
G E Onishchenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document