scholarly journals Growth on Metallo-Supramolecular Coordination Polyelectrolyte (MEPE) Stimulates Osteogenic Differentiation of Human Osteosarcoma Cells (MG63) and Human Bone Marrow Derived Mesenchymal Stem Cells

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1090 ◽  
Author(s):  
Janina Belka ◽  
Joachim Nickel ◽  
Dirk G. Kurth

Background: Culturing of cells is typically performed on standard tissue culture plates generating growth conditions, which in general do not reflect the native three-dimensional cellular environment. Recent investigations provide insights in parameters, which strongly affect the general cellular behavior triggering essential processes such as cell differentiation. The physical properties of the used material, such as stiffness, roughness, or topology, as well as the chemical composition of the cell-surface interface are shown to play a key role in the initiation of particular cellular responses. Methods: We extended our previous research, which identified thin films of metallo-supramolecular coordination polyelectrolytes (MEPEs) as substrate to trigger the differentiation of muscular precursor cells. Results: Here, we show that the same MEPEs similarly stimulate the osteogenic differentiation of pre-osteoblasts. Remarkably, MEPE modified surfaces also trigger the differentiation of primary bone derived mesenchymal stem cells (BMSCs) towards the osteogenic lineage. Conclusion: This result leads to the conclusion that these surfaces individually support the specification of cell differentiation toward lineages that correspond to the natural commitment of the particular cell types. We, therefore, propose that Fe-MEPEs may be used as scaffold for the treatment of defects at least in muscular or bone tissue.

2011 ◽  
Vol 8 (60) ◽  
pp. 998-1010 ◽  
Author(s):  
Jae Ho Lee ◽  
Hye-Sun Yu ◽  
Gil-Su Lee ◽  
Aeri Ji ◽  
Jung Keun Hyun ◽  
...  

Three-dimensional gel matrices provide specialized microenvironments that mimic native tissues and enable stem cells to grow and differentiate into specific cell types. Here, we show that collagen three-dimensional gel matrices prepared in combination with adhesive proteins, such as fibronectin (FN) and laminin (LN), provide significant cues to the differentiation into neuronal lineage of mesenchymal stem cells (MSCs) derived from rat bone marrow. When cultured within either a three-dimensional collagen gel alone or one containing either FN or LN, and free of nerve growth factor (NGF), the MSCs showed the development of numerous neurite outgrowths. These were, however, not readily observed in two-dimensional culture without the use of NGF. Immunofluorescence staining, western blot and fluorescence-activated cell sorting analyses demonstrated that a large population of cells was positive for NeuN and glial fibrillary acidic protein, which are specific to neuronal cells, when cultured in the three-dimensional collagen gel. The dependence of the neuronal differentiation of MSCs on the adhesive proteins containing three-dimensional gel matrices is considered to be closely related to focal adhesion kinase (FAK) activation through integrin receptor binding, as revealed by an experiment showing no neuronal outgrowth in the FAK-knockdown cells and stimulation of integrin β1 gene. The results provided herein suggest the potential role of three-dimensional collagen-based gel matrices combined with adhesive proteins in the neuronal differentiation of MSCs, even without the use of chemical differentiation factors. Furthermore, these findings suggest that three-dimensional gel matrices might be useful as nerve-regenerative scaffolds.


Nanoscale ◽  
2013 ◽  
Vol 5 (10) ◽  
pp. 4171 ◽  
Author(s):  
Spencer W. Crowder ◽  
Dhiraj Prasai ◽  
Rutwik Rath ◽  
Daniel A. Balikov ◽  
Hojae Bae ◽  
...  

2020 ◽  
Vol 8 (25) ◽  
pp. 5545-5546
Author(s):  
Qian Wu ◽  
Kaipeng Wang ◽  
Xichao Wang ◽  
Guohai Liang ◽  
Jinming Li

Correction for ‘Delivering siRNA to control osteogenic differentiation and real-time detection of cell differentiation in human mesenchymal stem cells using multifunctional gold nanoparticles’ by Qian Wu et al., J. Mater. Chem. B, 2020, 8, 3016–3027, DOI: 10.1039/c9tb02899d.


Sign in / Sign up

Export Citation Format

Share Document