scholarly journals High Acid Biochar-Based Solid Acid Catalyst from Corn Stalk for Lignin Hydrothermal Degradation

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1623
Author(s):  
Qimeng Jiang ◽  
Guihua Yang ◽  
Fangong Kong ◽  
Pedram Fatehi ◽  
Xiaoying Wang

Solid acid catalysts generally show the disadvantage of low acid amount and low recycling rate. To solve these problems, corn stalk-based solid acid catalysts were synthesized through carbonization and sulfonation processes in this work. The results showed that besides the rod-like structure inherited from raw corn stalk, the catalysts contained some small broken pieces on the surface, and the specific surface area varied from 1120 to 1640 m2/g. The functional groups (-SO3H) were successfully introduced onto the surface of the obtained solid acid catalysts. The acid amount varied between 1.2 and 2.4 mmol/g, which was higher than most of solid acid catalysts. The catalyst produced at 800 °C for 6 h in carbonation and then at 150 °C for 8 h in sulfonation had larger specific surface area and more sulfonate groups. In the degradation of lignin, the use of catalyst led to the generation of more aromatic compounds (65.6 wt. %) compared to that without using the catalyst (40.5 wt. %). In addition, a stable yield of reaction (85%) was obtained after four reuses. Therefore, corn stalk is suitable for high-value utilization to prepare high-acid amount biochar-based catalyst.

BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 4284-4303
Author(s):  
Junkang Xie ◽  
Qiaoning Han ◽  
Bo Feng ◽  
Zuguang Liu

An amphiphilic mesoporous carbon-based solid acid (LCx-SO3H) with high specific surface area was prepared from kraft lignin that was carbonized using a phosphoric acid treatment. It was found that the specific surface area, pore structure, and amphiphilic nature of the catalyst was effectively controlled through adjusting the phosphoric acid dosage during lignin carbonization. Under optimum preparation conditions, the specific surface area, pore volume, and average pore size of the catalyst were 282.2 m2/g, 0.26 cm3/g, and 6.73 nm, respectively. The performance of this solid acid catalyst for the hydration of α-pinene was characterized via gas chromatography analysis. The conversion of α-pinene and the yield of α-terpineol during hydration reaction were as high as 95.3% and 55.3%, respectively; these results were greater than the results from other hydration methods with sulfuric acid and commercially available solid acid catalysts (e.g., Amberlyst-15). After five recycles of the carbon-based solid acid without regeneration, conversion of α-pinene decreased from 95.3% to 92.6%, and the yield of α-terpineol decreased from 55.3% to 47.6%. These observations indicated that the solid acid catalyst derived from kraft lignin carbonization has high potential as a hydration agent for α-pinene.


1992 ◽  
Vol 57 (11) ◽  
pp. 2241-2247 ◽  
Author(s):  
Tomáš Hochmann ◽  
Karel Setínek

Solid acid catalysts with acid strength of -14.52 < H0 < -8.2 were prepared by sulfate treatment of the samples of boehmite calcined at 105-800 °C. Two preparation methods were used: impregnation of the calcined boehmite with 3.5 M H2SO4 or mixing of the boehmite samples with anhydrous aluminum sulfate, in both cases followed by calcination in nitrogen at 650 °C. The catalysts were characterized by measurements of surface area, adsorption of pyridine and benzene, acid strength measurements by the indicator method and by catalytic activity tests in the isomerization of cyclohexene, p-xylene and n-hexane. Properties of the catalysts prepared by both methods were comparable.


RSC Advances ◽  
2014 ◽  
Vol 4 (43) ◽  
pp. 22509-22519 ◽  
Author(s):  
Zhichao Miao ◽  
Huahua Zhao ◽  
Huanling Song ◽  
Lingjun Chou

A series of WO3 supported on ordered mesoporous zirconium oxophosphate solid acid catalyst was employed in benzylation reaction.


2013 ◽  
Vol 19 (4) ◽  
pp. 1413-1419 ◽  
Author(s):  
Rizwan Sheikh ◽  
Moo-Seok Choi ◽  
Jun-Seop Im ◽  
Yeung-Ho Park

2008 ◽  
Vol 22 (3) ◽  
pp. 1923-1929 ◽  
Author(s):  
Xiaoqin Fu ◽  
Zhenyu Dai ◽  
Songbai Tian ◽  
Jun Long ◽  
Suandi Hou ◽  
...  

2021 ◽  
Vol 2 (4) ◽  
pp. 645-669
Author(s):  
Maksim Tyufekchiev ◽  
Jordan Finzel ◽  
Ziyang Zhang ◽  
Wenwen Yao ◽  
Stephanie Sontgerath ◽  
...  

A systematic and structure-agnostic method for identifying heterogeneous activity of solid acids for catalyzing cellulose hydrolysis is presented. The basis of the method is preparation of a supernatant liquid by exposing the solid acid to reaction conditions and subsequent use of the supernatant liquid as a cellulose hydrolysis catalyst to determine the effects of in situ generated homogeneous acid species. The method was applied to representative solid acid catalysts, including polymer-based, carbonaceous, inorganic, and bifunctional materials. In all cases, supernatant liquids produced from these catalysts exhibited catalytic activity for cellulose hydrolysis. Direct comparison of the activity of the solid acid catalysts and their supernatants could not provide unambiguous detection of heterogeneous catalysis. A reaction pathway kinetic model was used to evaluate potential false-negative interpretation of the supernatant liquid test and to differentiate heterogeneous from homogeneous effects on cellulose hydrolysis. Lastly, differences in the supernatant liquids obtained in the presence and absence of cellulose were evaluated to understand possibility of false-positive interpretation, using structural evidence from the used catalysts to gain a fresh understanding of reactant–catalyst interactions. While many solid acid catalysts have been proposed for cellulose hydrolysis, to our knowledge, this is the first effort to attempt to differentiate the effects of heterogeneous and homogeneous activities. The resulting supernatant liquid method should be used in all future attempts to design and develop solid acids for cellulose hydrolysis.


RSC Advances ◽  
2015 ◽  
Vol 5 (103) ◽  
pp. 84621-84626 ◽  
Author(s):  
Peixue Wang ◽  
Shimin Liu ◽  
Feng Zhou ◽  
Benqun Yang ◽  
Ahmad S. Alshammari ◽  
...  

Efficient synthesis of diphenyl carbonate from dibutyl carbonate and phenol using square-shaped Zn–Ti–O nanoplates as solid acid catalyst.


2017 ◽  
Vol 48 (2) ◽  
pp. 117 ◽  
Author(s):  
Yane Ansanay ◽  
Praveen Kolar ◽  
Ratna Sharma-Shivappa ◽  
Jay Cheng ◽  
Sunkyu Park ◽  
...  

There is a significant interest in employing solid acid catalysts for pre-treatment of biomasses for subsequent hydrolysis into sugars, because solid acid catalysts facilitate reusability, high activity, and easier separation. Hence the present research investigated pretreatment of four lignocellulosic biomasses, namely Switchgrass (Panicum virgatum L ‘Alamo’), Gamagrass (Tripsacum dactyloides), Miscanthus (Miscanthus × giganteus) and Triticale hay (Triticale hexaploide Lart.) at 90°C for 2 h using three carbon-supported sulfonic acid catalysts. The catalysts were synthesized via impregnating p-Toluenesulfonic acid on carbon (regular) and further impregnated with iron nitrate via two methods to obtain magnetic A and magnetic B catalysts. When tested as pre-treatment agents, a maximum total lignin reduction of 17.73±0.63% was observed for Triticale hay treated with magnetic A catalyst. Furthermore, maximum glucose yield after enzymatic hydrolysis was observed to be 203.47±5.09 mg g–1 (conversion of 65.07±1.63%) from Switchgrass treated with magnetic A catalyst. When reusability of magnetised catalysts were tested, it was observed that magnetic A catalyst was consistent for Gamagrass, Miscanthus × Giganteus and Triticale hay, while magnetic B catalyst was found to maintain consistent yield for switchgrass feedstock. Our results suggested that magnetised solid acid catalyst could pre-treat various biomass stocks and also can potentially reduce the use of harsh chemicals and make bioenergy processes environment friendly.


2017 ◽  
Vol 727 ◽  
pp. 438-444
Author(s):  
Xiang Ying Hao ◽  
Yu Li Zhang ◽  
Guan Hua Shen ◽  
Wen Sheng Wu

SO42-/ Al-Fe-activated solid acid catalysts had been prepared in different conditions using cross-linking method, and characterized by XRD, BET, FTIR spectra and TG-DTA. The catalyst performed highly catalytic activity in the hydration of turpentine to α-terpineol.


Sign in / Sign up

Export Citation Format

Share Document