scholarly journals Surface Characteristics of Polymers with Different Absorbance after UV Picosecond Pulsed Laser Processing Using Various Repetition Rates

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2018
Author(s):  
Seung Sik Ham ◽  
Ho Lee

We experimented with two polymer materials with different ultraviolet (UV) wavelength absorption characteristics, which are commonly used in flexible devices, by applying an ultrashort-pulsed laser of a 355-nm UV wavelength for 10 ps. The laser parameters studied were pulse repetition rate, laser irradiation method, and laser power condition. Previous studies using polyethylene terephthalate (PET), which does not exhibit linear absorption at a UV wavelength, have focused on processing trends resulting in minimal collateral damage around the laser-induced ablation. However, our results showed a trend of accumulating such damage irrespective of the laser parameters. Meanwhile, polyimide (PI) exhibited a completely different behavior depending on the laser parameters. At low pulse repetition rates, minimal collateral damage was observed, whereas at high repetition rates, the morphology varied considerably. The electrical characteristics of the laser-processed materials were found to be correlated with the variations in morphology. In the case of PI, such variations in electrical resistance and morphology indicated that the material was carbonized. The findings of this study are expected to provide a useful reference when selecting parameters for the laser processing of similar polymer materials.

2021 ◽  
Vol 33 (1) ◽  
pp. 012009
Author(s):  
Aiko Narazaki ◽  
Hideyuki Takada ◽  
Dai Yoshitomi ◽  
Kenji Torizuka ◽  
Yohei Kobayashi

2021 ◽  
pp. 1-7
Author(s):  
A. V. Bogdanov ◽  
B. V. Buketkin ◽  
A. A. Kholopov ◽  
A. V. Perestoronin ◽  
R. Galiullin

2000 ◽  
Author(s):  
Xinwei Wang ◽  
Xianfan Xu ◽  
Lisa X. Xu

Abstract Ultrafast (or ultrashort) pulsed laser ablation of biological tissue has drawn much attention due to the minimal collateral damage caused by laser irradiation. Many clinical applications of ultrafast laser ablation have been proposed, including ophthalmology, dentistry, and neurosurgery (Kim et al., 1998). During ultrafast laser interaction with biological tissues, which are dielectric materials, multiphonon absorption occurs which enhances the absorption of the laser beam in tissue. The tissue can then be heated rapidly to a high temperature, causing evaporation and tissue removal.


2013 ◽  
Vol 40 (8) ◽  
pp. 0815003
Author(s):  
高勋 Gao Xun ◽  
邵妍 Shao Yan ◽  
杜闯 Du Chuang ◽  
赵振明 Zhao Zhenming ◽  
郑权 Zheng Quan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document