scholarly journals Analysis of Ionic Domains on a Proton Exchange Membrane Using a Numerical Approximation Model Based on Electrostatic Force Microscopy

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1258
Author(s):  
Byungrak Son ◽  
JaeHyoung Park ◽  
Osung Kwon

Understanding the ionic channel network of proton exchange membranes that dictate fuel cell performance is crucial when developing proton exchange membrane fuel cells. However, it is difficult to characterize this network because of the complicated nanostructure and structure changes that depend on water uptake. Electrostatic force microscopy (EFM) can map surface charge distribution with nano-spatial resolution by measuring the electrostatic force between a vibrating conductive tip and a charged surface under an applied voltage. Herein, the ionic channel network of a proton exchange membrane is analyzed using EFM. A mathematical approximation model of the ionic channel network is derived from the principle of EFM. This model focusses on free charge movement on the membrane based on the force gradient variation between the tip and the membrane surface. To verify the numerical approximation model, the phase lag of dry and wet Nafion is measured with stepwise changes to the bias voltage. Based on the model, the variations in the ionic channel network of Nafion with different amounts of water uptake are analyzed numerically. The mean surface charge density of both membranes, which is related to the ionic channel network, is calculated using the model. The difference between the mean surface charge of the dry and wet membranes is consistent with the variation in their proton conductivity.

Author(s):  
Byungrak Son ◽  
JaeHyoung Park ◽  
Osung Kwon

Understanding the ionic channel network of proton exchange membranes, which dictate fuel cell performance, is crucial when developing proton exchange membrane fuel cells. However, itis difficult to characterize due to complicated nano structure and differing changes to their structure with different amounts of water uptake. Electrostatic force microscopy (EFM) can map surface charge distribution as nano special resolution by measuring the electrostatic force between a vibrating conductive tip and a charged surface under an applied voltage, . In this study, the ionic channel network of a proton exchange membrane is analyzed using EFM. A mathematical approximation model of the ionic channel network is first derived, to explain changes in force gradient on the surface using EFM. The phase lag of dry and wet Nafion under stepwise changes to bias voltage is then measured. Based on the model, variations in the ionic channel network of Nafion with different amounts of water uptake are analyzed numerically. The mean surface charge density of both membranes, which is connected with the ionic channel network, is calculated using the model. The results show that the difference between the mean surface charge of the dry and wet membranes is consistent with the variation in their proton conductivity.


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Annika Carlson ◽  
Shun Yu ◽  
Göran Lindbergh ◽  
Rakel Wreland Lindström ◽  
...  

The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in-situ as a function of CNF surface charge density (600 and 1550 µmol g<sup>-1</sup>), counterion (H<sup>+</sup>or Na<sup>+</sup>), membrane thickness and fuel cell relative humidity (RH 55 to 95 %). The structural evolution of the membranes as a function of RH as measured by Small Angle X-ray scattering shows that water channels are formed only above 75 % RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (Na<sup>+</sup>or H<sup>+</sup>). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm<sup>-1</sup>at 30 °C between 65 and 95 % RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈ 30 % thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.<br>


Author(s):  
Scott A. Kenner ◽  
Nicholas M. Josefik ◽  
Scott M. Lux ◽  
James L. Knight ◽  
Melissa K. White ◽  
...  

Background: The U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) continues to manage The Department of Defense (DoD) Residential Proton Exchange Membrane (PEM) Fuel Cell Demonstration Project. This project was funded by the United States Congress for fiscal years 2001 through 2004. A fleet of 91 residential-scale PEM fuel cells, ranging in size from 1 to 5 kW, has been demonstrated at various U.S. DoD facilities around the world. Approach: The performance of the fuel cells has been monitored over a 12-month field demonstration period. A detailed analysis has been performed cataloging the component failures, investigating the mean time of the failures, and the mean time between failures. A discussion of the lifespan and failure modes of selected fuel cell components, based on component type, age, and usage will be provided. This analysis also addresses fuel cell stack life for both primary and back-up power systems. Several fuels were used throughout the demonstration, including natural gas, propane, and hydrogen. A distinction will be made on any variances in performance based on the input fuel stock. Summary: This analysis will provide an overview of the ERDC-CERL PEM demonstration fuel cell applications and the corresponding data from the field demonstrations. Special emphasis will be placed on the components, fuel cell stack life, and input fuel characteristics of the systems demonstrated.


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Annika Carlson ◽  
Shun Yu ◽  
Göran Lindbergh ◽  
Rakel Wreland Lindström ◽  
...  

<p>The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in-situ as a function of CNF surface charge density (600 and 1550 µmol g<sup>-1</sup>), counterion (H<sup>+</sup>or Na<sup>+</sup>), membrane thickness and fuel cell relative humidity (RH 55 to 95 %). The structural evolution of the membranes as a function of RH, as measured by Small Angle X-ray scattering, shows that water channels are formed only above 75 % RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (Na<sup>+</sup>or H<sup>+</sup>). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm<sup>-1</sup>at 30 °C between 65 and 95 % RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈ 30 % thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.</p>


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Annika Carlson ◽  
Shun Yu ◽  
Göran Lindbergh ◽  
Rakel Wreland Lindström ◽  
...  

<p>The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in-situ as a function of CNF surface charge density (600 and 1550 µmol g<sup>-1</sup>), counterion (H<sup>+</sup>or Na<sup>+</sup>), membrane thickness and fuel cell relative humidity (RH 55 to 95 %). The structural evolution of the membranes as a function of RH, as measured by Small Angle X-ray scattering, shows that water channels are formed only above 75 % RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (Na<sup>+</sup>or H<sup>+</sup>). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm<sup>-1</sup>at 30 °C between 65 and 95 % RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈ 30 % thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.</p>


2013 ◽  
Vol 58 (1) ◽  
pp. 1005-1011
Author(s):  
O. Kwon ◽  
S. C. Lee ◽  
D. H. Lee ◽  
A. K. Sahu ◽  
S. Shanmugam ◽  
...  

2021 ◽  
Vol 12 (3) ◽  
pp. 101
Author(s):  
Yu Leng ◽  
Daijun Yang ◽  
Pingwen Ming ◽  
Bing Li ◽  
Cunman Zhang

Corrosion resistance and electrical conductivity of stainless steel bipolar plate remains a big challenge while it has been regarded as the most promising candidate for proton exchange membrane fuel cell. The purpose of this paper is to study the effects of pickling and passivation by sulfuric acid and a mixture of nitric and fluoric acids, respectively, on corrosion resistance and electrical conductivity of stainless steel 316L (SS316L) bipolar plate. First, pickling of the specimens of SS316L is performed in a 15 wt.% H2SO4. Afterwards, the specimens are passivated in a mixture of 12 wt.% HF and 4 wt.% HNO3. Electrochemical and interfacial conductivity tests are conducted to examine the change in corrosion resistance and electrical conductivity of SS316L. Finally, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) reveal the evolution of surface morphology, chemical composition and surface conductivity. The results show that the corrosion resistance and electrical conductivity of SS316L could be improved significantly by pickling and passivation. The increase in Cr:Fe ratio as well as a more uniform surface with higher conductivity is the main reason for the improvement of corrosion resistance and interfacial conductivity of SS316L.


Sign in / Sign up

Export Citation Format

Share Document