scholarly journals Application of the Remote Interaction Effect and Molecular Imprinting in Sorption of Target Ions of Rare Earth Metals

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 321
Author(s):  
Talkybek Jumadilov ◽  
Ruslan Kondaurov ◽  
Aldan Imangazy

The goal of the present work is a comparative study of the effectiveness of the application of intergel systems and molecularly imprinted polymers for the selective sorption and separation of neodymium and scandium ions. The following physico-chemical methods of analysis were used in this study: colorimetry and atomic-emission spectroscopy. The functional polymers of polyacrylic acid (hPAA) and poly-4-vinylpyridine (hP4VP) in the intergel system undergo significant changes in the initial sorption properties. The remote interaction of the polymers in the intergel system hPAA–hP4VP provides mutual activation of these macromolecules, with subsequent transfer into a highly ionized state. The maximum sorption of neodymium and scandium ions is observed at molar ratios of 83%hPAA:17%hP4VP and 50%hPAA:50%hP4VP. Molecularly imprinted polymers MIP(Nd) and MIP(Sc) show good results in the sorption of Nd and Sc ions. Based on both these types of these macromolecular structures, principally new sorption methods have been developed. The method based on the application of the intergel system is cheaper and easier in application, but there is some accompanying sorption (about 10%) of another metal from the model solution during selective sorption and separation. Another method, based on the application of molecularly imprinted polymers, is more expensive and the sorption properties are higher, with the simultaneous sorption of the accompanying metal from the model solution.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3837
Author(s):  
Talkybek Jumadilov ◽  
Khuangul Khimersen ◽  
Zamira Malimbayeva ◽  
Ruslan Kondaurov

The research is aimed at checking the impact of a remote interaction phenomenon on growth of sorption properties of ion-exchange resins during sorption of europium ions. Industrial ion exchangers Amberlite IR120 and AB-17-8 were selected as objects for the study. Investigation was undertaken using the following physico-chemical methods of analysis: conductometry, pH-metry, colorimetry, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and atomic emission spectroscopy. Remote interaction of the initial ion exchangers in the interpolymer system leads to their transition into highly ionized state due to formation of optimal conformation. Found that high ionization areas of Amberlite IR120 and AB-17-8 are the molar ratios Amberlite IR120:AB-17-8 = 4:2 and 1:5. The remote interaction effect provides significant increase of the following sorption properties: sorption degree, polymer chain binding degree, effective dynamic exchange capacity. A strong increase of the sorption properties (average increase for all time of remote interaction is over 50%) in the interpolymer system Amberlite IR120-AB-17-8 was observed with individual polymer structures of Amberlite IR120 and AB-17-8. The remote interaction phenomenon can be successfully used for effective modification of industrial ion exchangers for sorption of rare-earth metals.


2013 ◽  
Vol 1 ◽  
Author(s):  
Anastasia P. Leshchinskaya ◽  
Irina V. Polyakova ◽  
Anna R. Groshikova ◽  
Oleg A. Pisarev ◽  
Evgeniy F. Panarin

2010 ◽  
Vol 38 (3) ◽  
pp. 401-404
Author(s):  
Da-Wei LOU ◽  
Ying-Jie YANG ◽  
Guang HUANG ◽  
Ping-Li PU ◽  
Xin-Qing LEE ◽  
...  

2019 ◽  
Vol 31 (11) ◽  
pp. 2527-2531
Author(s):  
St. Fauziah ◽  
N.H. Soekamto ◽  
P. Budi ◽  
P. Taba

Molecularly imprinted polymers (MIP) as an adsorbent has been synthesized using β-sitosterol as molecule template on free radical polymerization reaction. The capacity and selectivity of the adsorption from MIP to β-sitosterol was studied in this study. The β-sitosterol concentration in the adsorption-desorption test and the MIP selectivity test were analyzed by UV-visible and HPLC. The MIP obtained from the synthesis results in a high adsorption capacity. Based on the Freundlich adsorption isothermal equation, the adsorption capacity (k) was found to be 1.24 mg/g. The MIP can adsorb 100 % β-sitosterol while cholesterol was only 3 %. The MIP is most selective to β-sitosterol, therefore, has high potential to apply as adsorbent at solid phase extraction method to isolate β-sitosterol from sample extract.


Author(s):  
P. U. Ashvin Iresh Fernando ◽  
Matthew W. Glasscott ◽  
Kaytee Pokrzywinski ◽  
Brianna M. Fernando ◽  
Gilbert K. Kosgei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document