maximum sorption
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 102)

H-INDEX

15
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Maryam Rezaei ◽  
Nima Pourang ◽  
Ali Mashinchian Moradi

AbstractThe biosorptive potentials of three aquatics-based biosorbents, including shells of a bivalve mollusk and scales of two fish species for Pb removal from aqueous solutions were evaluated, for the first time. A Box–Behnken design with the response surface methodology was used to investigate the effects of the seven important variables (contact time, temperature, initial concentration, dosage, size, salinity and pH) on the sorption capacity of the sorbents. Among the seven studied factors, the effects of biosorbent dosage, initial concentration and pH were significant for all the response variables, while biosorbent size was not significant for any of the responses. The initial concentration was the most influential factor. The presence of Pb ions on the surfaces of the biosorbents after the adsorption was clearly confirmed by the SEM–EDX and XRF analyses. The maximum sorption capacities of the biosorbents were comparable to the literature and the descending order was as follows: scales of Rutilus kutum and Oncorhynchus mykiss and the shells of Cerastoderma glaucum. The isotherm studies revealed Langmuir model applicability for the Pb adsorption by R. kutum and O. mykiss scales, while Freundlich model was fitted to the adsorption C. glaucum shells.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 321
Author(s):  
Talkybek Jumadilov ◽  
Ruslan Kondaurov ◽  
Aldan Imangazy

The goal of the present work is a comparative study of the effectiveness of the application of intergel systems and molecularly imprinted polymers for the selective sorption and separation of neodymium and scandium ions. The following physico-chemical methods of analysis were used in this study: colorimetry and atomic-emission spectroscopy. The functional polymers of polyacrylic acid (hPAA) and poly-4-vinylpyridine (hP4VP) in the intergel system undergo significant changes in the initial sorption properties. The remote interaction of the polymers in the intergel system hPAA–hP4VP provides mutual activation of these macromolecules, with subsequent transfer into a highly ionized state. The maximum sorption of neodymium and scandium ions is observed at molar ratios of 83%hPAA:17%hP4VP and 50%hPAA:50%hP4VP. Molecularly imprinted polymers MIP(Nd) and MIP(Sc) show good results in the sorption of Nd and Sc ions. Based on both these types of these macromolecular structures, principally new sorption methods have been developed. The method based on the application of the intergel system is cheaper and easier in application, but there is some accompanying sorption (about 10%) of another metal from the model solution during selective sorption and separation. Another method, based on the application of molecularly imprinted polymers, is more expensive and the sorption properties are higher, with the simultaneous sorption of the accompanying metal from the model solution.


2022 ◽  
Vol 7 (1) ◽  
pp. 23-31
Author(s):  
Martin Pipíška ◽  
Miroslav Horník ◽  
Ľuboš Vrtoch ◽  
Soňa Šnirclová ◽  
Jozef Augustín

Non-living lichen Evernia prunastri was studied as biosorbent material for zinc and cobalt removal from single and binary metal solutions. Sorption equilibrium of Zn2+ and Co2+ ions was reached within 1 hour. Both cobalt and zinc biosorption was not pH dependent within the range pH 4-6 and negligible at pH 2. The experimental results were fitted to the Langmuir, Freundlich, Redlich-Peterson and Langmuir-Freundlich adsorption isotherms to obtain the characteristic parameters of each model. The Langmuir, Redlich-Peterson and Langmuir-Freundlich isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the maximum sorption capacities of metal ions onto lichen biomass were 112 μmol/g Zn and 97.2 μmol/g Co from single metal solutions. E. prunastri exhibited preferential uptake of zinc from equimolar binary Zn2+ - Co2+ mixtures within the range 50 – 4000 μM. Even thought mutual interference was seen in all Co-Zn binary systems. To evaluate the two-metal sorption system, simple curves had to be replaced by three-dimensional sorption surface. These results can be used to elucidate the behavior of lichens as bioindicators of cobalt and zinc pollution in water and terrestrial ecosystems.


2022 ◽  
Vol 14 (2) ◽  
pp. 725
Author(s):  
Francesco Izzo ◽  
Alessio Langella ◽  
Bruno de Gennaro ◽  
Chiara Germinario ◽  
Celestino Grifa ◽  
...  

The technological performance of a chabazite-rich rock belonging to the Campanian Ignimbrite formation, outcropping in the nearby of San Mango sul Calore (southern Italy), has been evaluated for the sorption and release of ibuprofen sodium salt after a surface modification of the starting geomaterial using two different chlorinated surfactants. Equilibrium sorption isotherms and in vitro loading tests demonstrated that the maximum sorption capacities of this geomaterial reach up to 24.5 and 13.5 mg/g, respectively, for zeolite modified with cetylpyridinium and benzalkonium. These results, obtained by non-linear mathematical modeling of the experimental curves, are definitely compatible with the concentrations of the most common non-steroidal anti-inflammatory drugs (such as ibuprofen) in wastewaters, which have been recently considered as contaminants of emerging concern. This investigation also encourages a new possible sustainable exploitation of the lithified yellow facies of Campanian Ignimbrite, although future developments will be focused on using more stable and eco-friendlier two-tailed surfactants.


2021 ◽  
Vol 12 (2-2021) ◽  
pp. 253-260
Author(s):  
O. A. Timoshchik ◽  
◽  
E. A. Shchelokova ◽  
A. G. Kasikov ◽  
M. V. Bryukhanova ◽  
...  

The sorption of vanadium (V) and nickel (II) from aqueous solutions on amorphous silica obtained from metallurgical slags of the Kola MMC is considered, and the optimal conditions for the metal sorption process are determined. It is established that the maximum sorption of metals is achieved at pH 2.0–4.0, at a temperature of 40 °C and a process time of 60 minutes for nickel and 90 minutes for vanadium.


Author(s):  
V. S. Soldatov ◽  
L. N. Shachenkova ◽  
E. G. Kasandrovich ◽  
P. V. Nesteronok

Curves of potentiometric titration of fully protonized fibrous ion exchangers with potassium hydroxide against the background of 1 M KCl in the presence of chlorides of Ni2+, Со2+, Сu2+ and Ca2+ were obtained. The ion exchangers were synthesized by modifying of industrial polyacrylonitrile fiber with diethylenetriamine and triethylenetetraamine and predominantly contained functional groups R-CO-NH- (CH2CH2NH)nH (n = 2 or 3) and a small amount of carboxyl groups. The sorption of Ni2+, Со2+, Сu2+ и Ca2+by ion exchangers was calculated from the data obtained depending on the pH of the medium. It was found that the investigated ion exchangers with high selectivity sorb heavy metal ions in a wide range of acidity of solutions (pH 2–9) due to the formation of metal-polymer complexes with polyamine functional groups. The maximum sorption capacity is 1.5–2.7 and 4–5 meq/g for ion exchangers with n = 2 and 3, respectively.


Kerntechnik ◽  
2021 ◽  
Vol 86 (6) ◽  
pp. 404-410
Author(s):  
Y. Shi ◽  
W. Chen ◽  
H. Lin ◽  
Z. Gao ◽  
B. Yang ◽  
...  

Abstract In this study,90Sr was used as the test radionuclide to characterize the sorption kinetics and effects of initial 90Sr activity and remaining 90Sr in solid concentration were simulated for a near-surface repository. The study focused on the sorption characteristics of radionuclides in unsaturated groundwater environment (or vadose zone) is the important information for investigating the near-surface disposal of intermediate and low-level radioactive waste (ILLW). Moreover, the 90Sr sorption experiments reached equilibrium within 56 h, which fit to the first order sorption kinetic model, and the remaining 90Sr in mudrock samples showed obvious sorption equilibrium hysteresis, which fit to the second order sorption kinetic model. Before reaching the maximum sorption capacity, the sorption rate constant increases with 90Sr increasing; the distribution coefficient (Kd) of 56 h decreases with the remaining 90Sr decreasing. In addition, it showed that the slow sorption process dominated before the sorption reaches equilibrium. In fact, a reliable safety assessment methodology for on-going near-surface repository required a lot of the radionuclides parameters with local environment including the radionuclides sorption/desorption rate constant and maximum sorption capacity.


2021 ◽  
Vol 9 (1) ◽  
pp. 53-62
Author(s):  
Lucia Remenárová ◽  
Martin Pipíška ◽  
Miroslav Horník ◽  
Jozef Augustín

With the aim to investigate sorption properties of natural sorbent prepared from moss Rhytidiadelphus squarrosus we elucidated biosorption of cationic dyes Malachite green (BG4), Auramine O (BY2) and Thioflavine T (BY1) from aqueous solutions. The removal of dyes by moss biosorbent was found to be rapid at an initial stage and the equilibrium was reached within 1-2 hours. The pseudo-n-order kinetic model was successfully applied to the kinetic data and the order of adsorption reaction was calculated in the range from 1.7 to 2.6. The value of rate constant kn' ranged from 0.001 to 0.039 [min-1]/[μmol/g]1-n. The equilibrium data were fitted to the adsorption isotherms. The Freundlich isotherm was found to represent the measured sorption data of BG4, BY1 and BY2 well. The maximum sorption capacities of moss biomass from single dye solutions calculated by Langmuir equation were 354 μmol/g for BG4, 310 μmol/g for BY1 and 382 μmol/g for BY2. These results showed that the prepared biomass presents low-cost, natural and easy available sorbent which may be potentially used for removal of dyes from environment and also may be an alternative to more costly materials such as activated carbon.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3263
Author(s):  
Inga Zinicovscaia ◽  
Nikita Yushin ◽  
Doina Humelnicu ◽  
Dmitrii Grozdov ◽  
Maria Ignat ◽  
...  

The adsorption capacity of two sorbents, silica SBA-15 and titanosilicate ETS-10, toward Ce(III) was tested. The obtained sorbents were characterized using X-ray diffraction, nitrogen adsorption-desorption, Scanning electron microscopy, and Fourier-transform infrared spectroscopy. The effects of solution acidity, cerium concentration, time of contact, and temperature on Ce(III) sorption were investigated. The maximum Ce(III) removal by silica SBA-15 was achieved at pH 3.0 and by titanosilicate ETS-10 at a pH range of 4.0–5.0. The Freundlich, Langmuir, and Temkin isotherm models were applied for the description of equilibrium sorption of Ce(III) by the studied absorbents. Langmuir model obeys the experimentally obtained data for both sorbents with a maximum sorption capacity of 68 and 162 mg/g for silica SBA-15 and titanosilicate ETS-10, respectively. The kinetics of the sorption were described using pseudo-first- and pseudo-second-order kinetics, Elovich, and Weber–Morris intraparticle diffusion models. The adsorption data fit accurately to pseudo-first- and pseudo-second-order kinetic models. Thermodynamic data revealed that the adsorption process was spontaneous and exothermic.


2021 ◽  
Author(s):  
Amit Kumar Dey ◽  
Abhijit Dey

Adsorption of Methylene Blue onto chemically (Na2CO3) treated ripe betel nut fibre (TRBNF) was studied using batch adsorption process for different concentrations of dye solutions (50, 100, 150 and 200 mg/L). Experiments were carried out as a function of contact time, initial solution pH (3 to11), adsorbent dose (10 gm/L – 18 gm/L) and temperature (293, 303 and 313 K). The adsorption was favoured at neutral pH and lower temperatures. Adsorption data were well described by the Langmuir isotherm and subsequently optimised using a second-order regression model by implementing face-centred CCD of Response Surface Methodology (RSM). The adsorption process followed the pseudo-second-order kinetic model. The maximum sorption capacity (qmax) was found to be 31.25 mg/g. Thermodynamic parameters suggest that the adsorption is a typical physical process, spontaneous, enthalpy driven and exothermic in nature. The maximum adsorption occurred at pH 7.0. The effect of adsorption was studied and optimum adsorption was obtained at a TRBNF dose of15 gm/L.


Sign in / Sign up

Export Citation Format

Share Document