scholarly journals Mechanical Behavior of Hybrid Glass/Steel Fiber Reinforced Epoxy Composites

Polymers ◽  
2017 ◽  
Vol 9 (12) ◽  
pp. 151 ◽  
Author(s):  
Amanda McBride ◽  
Samuel Turek ◽  
Arash Zaghi ◽  
Kelly Burke
Materials ◽  
2017 ◽  
Vol 10 (6) ◽  
pp. 666 ◽  
Author(s):  
Viktor Gribniak ◽  
Vytautas Tamulenas ◽  
Pui-Lam Ng ◽  
Aleksandr K. Arnautov ◽  
Eugenijus Gudonis ◽  
...  

2016 ◽  
Vol 9 (2) ◽  
pp. 153-191
Author(s):  
W. M. Pereira Junior ◽  
D. L. Araújo ◽  
J. J. C. Pituba

ABSTRACT This work deals with numerical modeling of the mechanical behavior of steel-fiber-reinforced concrete beams using a constitutive model based on damage mechanics. Initially, the formulation of the damage model is presented. The concrete is assumed to be an initial elastic isotropic medium presenting anisotropy, permanent strains, and bimodularity induced by damage evolution. In order to take into account the contribution of the steel fiber to the mechanical behavior of the media, a homogenization procedure is employed. Finally, numerical analyses of steel-fiber-reinforced concrete beams submitted to bending loading are performed in order to show the good performance of the model and its potential.


2012 ◽  
Vol 5 (1) ◽  
pp. 1-11 ◽  
Author(s):  
A. D. de Figueiredo ◽  
A. de la Fuente ◽  
A. Aguado ◽  
C. Molins ◽  
P. J. Chama Neto

This paper is the first part of an extensive work focusing the technological development of steel fiber reinforced concrete pipes (FRCP). Here is presented and discussed the experimental campaign focusing the test procedure and the mechanical behavior obtained for each of the dosages of fiber used. In the second part ("Steel fiber reinforced concrete pipes. Part 2: Numerical model to simulate the crushing test"), the aspects of FRCP numerical modeling are presented and analyzed using the same experimental results in order to be validated. This study was carried out trying to reduce some uncertainties related to FRCP performance and provide a better condition to the use of these components. In this respect, an experimental study was carried out using sewage concrete pipes in full scale as specimens. The diameter of the specimens was 600 mm, and they had a length of 2500 mm. The pipes were reinforced with traditional bars and different contents of steel fibers in order to compare their performance through the crushing test. Two test procedures were used in that sense. In the 1st Series, the diameter displacement was monitored by the use of two LVDTs positioned at both extremities of the pipes. In the 2nd Series, just one LVDT is positioned at the spigot. The results shown a more rigidity response of the pipe during tests when the displacements were measured at the enlarged section of the socket. The fiber reinforcement was very effective, especially when low level of displacement was imposed to the FRCP. At this condition, the steel fibers showed an equivalent performance to superior class pipes made with traditional reinforced. The fiber content of 40 kg/m3 provided a hardening behavior for the FRCP, and could be considered as equivalent to the critical volume in this condition.


Author(s):  
R Toledo-Filho ◽  
V Almeida ◽  
E Fairbairn ◽  
L Rosa

Materials ◽  
2017 ◽  
Vol 10 (7) ◽  
pp. 772 ◽  
Author(s):  
Caitlin O’Brien ◽  
Amanda McBride ◽  
Arash E. Zaghi ◽  
Kelly Burke ◽  
Alex Hill

Sign in / Sign up

Export Citation Format

Share Document