scholarly journals An Effective Bi-Stage Method for Renewable Energy Sources Integration into Unbalanced Distribution Systems Considering Uncertainty

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 471
Author(s):  
Eman S. Ali ◽  
Ragab A. El-Sehiemy ◽  
Adel A. Abou El-Ela ◽  
Karar Mahmoud ◽  
Matti Lehtonen ◽  
...  

The output generations of renewable energy sources (RES) depend basically on climatic conditions, which are the main reason for their uncertain nature. As a result, the performance and security of distribution systems can be significantly worsened with high RES penetration. To address these issues, an analytical study was carried out by considering different penetration strategies for RES in the radial distribution system. Moreover, a bi-stage procedure was proposed for optimal planning of RES penetration. The first stage was concerned with calculating the optimal RES locations and sites. This stage aimed to minimize the voltage variations in the distribution system. In turn, the second stage was concerned with obtaining the optimal setting of the voltage control devices to improve the voltage profile. The multi-objective cat swarm optimization (MO-CSO) algorithm was proposed to solve the bi-stages optimization problems for enhancing the distribution system performance. Furthermore, the impact of the RES penetration level and their uncertainty on a distribution system voltage were studied. The proposed method was tested on the IEEE 34-bus unbalanced distribution test system, which was analyzed using backward/forward sweep power flow for unbalanced radial distribution systems. The proposed method provided satisfactory results for increasing the penetration level of RES in unbalanced distribution networks.

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6152
Author(s):  
Raavi Satish ◽  
Kanchapogu Vaisakh ◽  
Almoataz Y. Abdelaziz ◽  
Adel El-Shahat

The impacts of the fast growth of renewable energy sources (RESs) and distribution static synchronous compensators (D-STATCOMs) on unbalanced radial distribution networks (URDNs) are analyzed with three-phase power flow algorithms (PFAs). As the URDNs are unbalanced, they can experience voltage unbalance (VU). This paper proposes a novel three-phase PFA for URDNs with multiple RES and D-STATCOM device integrations. The bus number matrix (BNM) and branch number matrix (BRNM) developed in this paper make the implementation of the proposed PFA simple. These matrices are developed to store the bus numbers and branch numbers of newly created sections of the URDN. Both PQ and PV modeling of RES and PV modeling of D-STATCOM devices are effectively integrated into the proposed three-phase PFA. The accuracy of the proposed PFA has been tested on the IEEE-13 bus URDN and the results are found to be accurate with the IEEE results. Several study examples have been conducted on the IEEE-13 bus and the IEEE-34 bus URDNs with multiple integrations of three-phase RESs and three-phase D-STATCOMs. Test results indicate that these integrations improve the voltage profile, reduce the power loss and reduce the severity of the VU.


Author(s):  
Lazhar Bougouffa ◽  
Abdelaziz Chaghi

<p>The use of Distributed Renewable Energy Sources in the electrical network has expanded greatly. But, integration of these resources into distribution systems caused more problems in protection related issues such as mis-coordination, and changes the direction and value of fault currents. When connecting new D-RES to electrical power distribution networks, it is required to re-coordinate Directional Over-CurrentRelays (DOC-Relays) to ensure the continuity of the power transmission when the short circuits take place. This work presented a Particle Swarm Optimization (PSO) algorithm to determine two independent variables called Pickup current (Ip) and Time Dial Setting (TDS) for optimal setting of relays. From analysis result, the impacts of RES location in the distribution system on DOCRs had been observed on the optimal relays settings</p>


2018 ◽  
Vol 7 (3) ◽  
pp. 223-231
Author(s):  
Saad Muftah Saad ◽  
Naser El Naily ◽  
Faisal A. Mohamed

The environmental and economic features of renewable energy sources have made it possible to be integrated as Distributed Generation (DG) units in distribution networks and to be widely utilized in modern distribution systems. The intermittent nature of renewable energy sources, altering operational conditions, and the complex topology of active distribution networks makes the level of fault currents significantly variable. Thus, the use of distance protection scheme instead of conventional overcurrent schemes offers an appropriate alternative for protection of modern distribution networks. In this study, the effect of integrating multiple DG units on the effective cover of distance protection schemes and the coordination between various relays in the network was studied and investigated in radiology and meshed operational topologies. Also, in cases of islanded and grid-connected modes. An adaptive distance scheme has been proposed for adequate planning of protection schemes to protect complex networks with multiple distribution sources. The simplified simulated network implemented in NEPLAN represents a benchmark IEC microgrid. The comprehensive results show an effective protection measure for secured microgrid operation.Article History: Received October 18th 2017; Received in revised form May 17th 2018; Accepted July 8th 2018; Available onlineHow to Cite This Article: Saad, S.M., Naily, N.E. and Mohamed, F.A. (2018). Investigating the Effect of DG Infeed on the Effective Cover of Distance Protection Scheme in Mixed-MV Distribution Network. International Journal of Renewable Energy Development, 7(3), 223-231.https://doi.org/10.14710/ijred.7.3.223-231


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3364 ◽  
Author(s):  
Francisco García-López ◽  
Manuel Barragán-Villarejo ◽  
Alejandro Marano-Marcolini ◽  
José Maza-Ortega ◽  
José Martínez-Ramos

This paper assesses the behaviour of active distribution networks with high penetration of renewable energy sources when the control is performed in a centralised manner. The control assets are the on-load tap changers of transformers at the primary substation, the reactive power injections of the renewable energy sources, and the active and reactive power exchanged between adjacent feeders when they are interconnected through a DC link. A scaled-down distribution network is used as the testbed to emulate the behaviour of an active distribution system with massive penetration of renewable energy resources. The laboratory testbed involves hardware devices, real-time control, and communication infrastructure. Several key performance indices are adopted to assess the effects of the different control actions on the system’s operation. The experimental results demonstrate that the combination of control actions enables the optimal integration of a massive penetration of renewable energy.


Author(s):  
Subramanya Sarma S ◽  
V. Madhusudhan ◽  
V. Ganesh

<p>Reliability worth assessment is a primary concern in planning and designing of electrical distribution systems those operate in an economic manner with minimal interruption of electric supply to customer loads. Renewable energy sources (RES) based Distributed Generation (DG) units can be forecasted to penetrate in distribution networks due to advancement in their technology. The assessment of reliability worth of DG enhanced distribution networks is a relatively new research area. This paper proposes a methodology that can be used to analyze the reliability of active distribution systems (DG enhanced distribution system) and can be applied in preliminary planning studies to compute the reliability indices and statistics. The reliability assessment in this work is carried out with analytical approach applied on a test system and simulated results validate that installation of distributed generators can improve the distribution system reliability considerably.</p>


2021 ◽  
Vol 11 (1) ◽  
pp. 405
Author(s):  
Daniel Alcala-Gonzalez ◽  
Eva Maria García del Toro ◽  
María Isabel Más-López ◽  
Santiago Pindado

The increase in the installation of renewable energy sources in electrical systems has changed the power distribution networks, and a new scenario regarding protection devices has arisen. Distributed generation (DG) might produce artificial delays regarding the performance of protection devices when acting as a result of short-circuits. In this study, the preliminary research results carried out to analyze the effect of renewable energy sources (photovoltaic, wind generation, etc.) on the protection devices of a power grid are described. In order to study this problem in a well-defined scenario, a quite simple distribution network (similar to the ones present in rural areas) was selected. The distribution network was divided into three protection zones so that each of them had DG. In the Institute of Electrical and Electronic Engineers (IEEE) system 13 bus test feeder, the short-circuits with different levels of penetration were performed from 1 MVA to 3 MVA (that represent 25%, 50%, and 75% of the total load in the network). In the simulations carried out, it was observed that the installation of DG in this distribution network produced significant changes in the short-circuit currents, and the inadequate performance of the protection devices and the delay in their operating times (with differences of up to 180% in relation to the case without DG). The latter, that is, the impacts of photovoltaic DG on the reactions of protection devices in a radial distribution network, is the most relevant outcome of this work. These are the first results obtained from a research collaboration framework established by staff from ETSI Civil and the IDR/UPM Institute, to analyze the effect of renewable energy sources (as DG) on the protection devices of a radial distribution network.


This Paper presents a control strategy of the grid interconnected inverter Renewable Energy Sources (RES). This system can achieve the maximum benefits from these grid interconnected inverter when installed in 3-phase 4-wire distribution system. Increasing electrification of daily life causes growing electricity consumption and the rising number of sensitive or critical loads demand for high quality electricity. One of the main problems facing today is that related with the transmission and distribution of electricity. Due to the rapid increase in global energy consumption and the diminishing of fossil fuels, the customer demand for new generation capacities and efficient energy production, delivery and utilization keeps rising. Utilizing distributed generation, renewable energy and energy storage can potentially solve problems as energy shortage. With the increase in load demand, the Renewable Energy Sources (RES) are increasingly connected in the distribution systems which utilizes power electronic Converters/Inverters. The inverter can perform as a multi function device by incorporating active power filter functionality. The inverter can thus be utilized as: 1) power converter to inject power generated from RES to the grid, and 2) shunt APF to compensate current unbalance, load current harmonics, load reactive power demand and load neutral current. All of these functions may be accomplished either individually or simultaneously. This new control concept is demonstrated with extensive MATLAB/Simulink simulation studies and validated through digital signal processor-based laboratory experimental results.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1858 ◽  
Author(s):  
Fatma Yaprakdal ◽  
Mustafa Baysal ◽  
Amjad Anvari-Moghaddam

Passive distribution networks are being converted into active ones by incorporating distributed means of energy generation, consumption, and storage, and the formation of so-called microgrids (MGs). As the next generation of MGs, reconfigurable microgrids (RMGs) are still in early phase studies, and require further research. RMGs facilitate the integration of distributed generators (DGs) into distribution systems and enable a reconfigurable network topology by the help of remote-controlled switches (RCSs). This paper proposes a day-ahead operational scheduling framework for RMGs by simultaneously making an optimal reconfiguration plan and dispatching controllable distributed generation units (DGUs) considering power loss minimization as an objective. A hybrid approach combining conventional particle swarm optimization (PSO) and selective PSO (SPSO) methods (PSO&SPSO) is suggested for solving this combinatorial, non-linear, and NP-hard complex optimization problem. PSO-based methods are primarily considered here for our optimization problem, since they are efficient for power system optimization problems, easy to code, have a faster convergence rate, and have a substructure that is suitable for parallel calculation rather than other optimization methods. In order to evaluate the suggested method’s performance, it is applied to an IEEE 33-bus radial distribution system that is considered as an RMG. One-hour resolution of the simultaneous network reconfiguration (NR) and the optimal dispatch (OD) of distributed DGs are carried out prior to this main study in order to validate the effectiveness and superiority of the proposed approach by comparing relevant recent studies in the literature.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5516
Author(s):  
Filip Relić ◽  
Predrag Marić ◽  
Hrvoje Glavaš ◽  
Ivica Petrović

In the modern power system, Flexible Alternating Current Transmission System (FACTS) devices are widely used. An increased share of the distributed generation (DG) and the development of microgrids change the power flows in the existing distribution networks as well as a conventional power flow direction from the transmission to the distribution network level which may affect the overall stability aspects. The paper shows the FACTS devices’ implementation influence on the performance of the distribution network with integrated renewable energy sources (RES) observing the aspects of the oscillatory stability and the low-voltage motor starting. The FACTS devices, in particular the static var compensators (SVC), have been allocated according to a novel algorithm proposed in the paper. The algorithm uses an iterative process to determine an optimal location for implementation and rating power of SVC considering active power losses minimization, improvement of the voltage profile and maximizing return of investment (ROI) of FACTS devices. Novel constraints—transformer station construction constraint, SVC industrial nominal power value constraint and the constraint of distribution system operator (DSO) economic willingness to investment in the distribution network development are considered in the proposed algorithm. The analysis has been performed on 20 kV rural distribution network model in DIgSILENT PowerFactory software.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 3030 ◽  
Author(s):  
Giovanni M. Casolino ◽  
Arturo Losi

The demand becoming flexible is a requirement for the full exploitation of renewable energy sources. Aggregation may foster the provision of flexibility by small-scale providers connected to distribution grids, since it allows offering significant flexibility volumes to the market. The aggregation of flexibility providers is carried out by the aggregator, a new market role and possibly a new market player. Location information of individual flexibility providers is necessary for both the aggregator and the system operators, in particular, the Distribution System Operator (DSO). For the former, information should allow treating a high number of individual flexibility providers as a single provider to offer significant flexibility volumes to the markets; for the latter, the information should ensure an adequate visibility of the connection of the individual providers to the grid. In the paper, the concept of Load Area (LA) is recalled, which combines the needs of location information of the aggregator and of the DSO. A method for the identification and modeling of LAs for the general case of unbalanced radial systems is proposed. The results of the methods’ application to two studied unbalanced networks are presented, showing the effectiveness and viability of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document